隐式解的拉盖尔-交点法。

Q4 Mathematics International Journal of Computational Geometry & Applications Pub Date : 2018-03-01 Epub Date: 2018-03-29 DOI:10.1142/s0218195918500012
Michelle Hatch Hummel, Bihua Yu, Carlos Simmerling, Evangelos A Coutsias
{"title":"隐式解的拉盖尔-交点法。","authors":"Michelle Hatch Hummel,&nbsp;Bihua Yu,&nbsp;Carlos Simmerling,&nbsp;Evangelos A Coutsias","doi":"10.1142/s0218195918500012","DOIUrl":null,"url":null,"abstract":"<p><p>Explicit solvent molecular dynamics simulations of a macromolecule are slow as the number of solvent atoms considered typically increases by order of magnitude. Implicit methods introduce surface-dependent corrections to the force field, gaining speed at the expense of accuracy. Properties such as molecular interface surfaces, volumes and cavities are captured by Laguerre tessellations of macromolecules. However, Laguerre cells of exterior atoms tend to be overly large or unbounded. Our method, the inclusion-exclusion based Laguerre-Intersection method, caps cells in a physically accurate manner by considering the intersection of the space-filling diagram with the Laguerre tessellation. We optimize an adjustable parameter, the weight, to ensure the areas and volumes of capped cells exposed to solvent are as close as possible, on average, to those computed from equilibrated explicit solvent simulations. The contact planes are radical planes, meaning that as the solvent weight is varied, interior cells remain constant. We test the consistency of our model using a high-quality trajectory of HIV-protease, a dimer with flexible loops and open-close transitions. We also compare our results with interval-arithmetic Gauss-Bonnet based method. Optimal solvent parameters quickly converge, which we use to illustrate the increased fidelity of the Laguerre-Intersection method over two recently proposed methods as compared to the explicit model.</p>","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"28 1","pages":"1-38"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0218195918500012","citationCount":"0","resultStr":"{\"title\":\"LAGUERRE-INTERSECTION METHOD FOR IMPLICIT SOLVATION.\",\"authors\":\"Michelle Hatch Hummel,&nbsp;Bihua Yu,&nbsp;Carlos Simmerling,&nbsp;Evangelos A Coutsias\",\"doi\":\"10.1142/s0218195918500012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Explicit solvent molecular dynamics simulations of a macromolecule are slow as the number of solvent atoms considered typically increases by order of magnitude. Implicit methods introduce surface-dependent corrections to the force field, gaining speed at the expense of accuracy. Properties such as molecular interface surfaces, volumes and cavities are captured by Laguerre tessellations of macromolecules. However, Laguerre cells of exterior atoms tend to be overly large or unbounded. Our method, the inclusion-exclusion based Laguerre-Intersection method, caps cells in a physically accurate manner by considering the intersection of the space-filling diagram with the Laguerre tessellation. We optimize an adjustable parameter, the weight, to ensure the areas and volumes of capped cells exposed to solvent are as close as possible, on average, to those computed from equilibrated explicit solvent simulations. The contact planes are radical planes, meaning that as the solvent weight is varied, interior cells remain constant. We test the consistency of our model using a high-quality trajectory of HIV-protease, a dimer with flexible loops and open-close transitions. We also compare our results with interval-arithmetic Gauss-Bonnet based method. Optimal solvent parameters quickly converge, which we use to illustrate the increased fidelity of the Laguerre-Intersection method over two recently proposed methods as compared to the explicit model.</p>\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"28 1\",\"pages\":\"1-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0218195918500012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218195918500012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218195918500012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

一个大分子的显式溶剂分子动力学模拟是缓慢的,因为所考虑的溶剂原子的数量通常以数量级增加。隐式方法引入了依赖于表面的力场修正,以牺牲精度来获得速度。诸如分子界面表面、体积和空腔等特性是由大分子的拉盖尔镶嵌捕获的。然而,外部原子的拉盖尔细胞往往过大或无界。我们的方法,基于包容-排除的拉盖尔-交集方法,通过考虑空间填充图与拉盖尔镶嵌的交集,以一种物理上准确的方式来覆盖细胞。我们优化了一个可调参数——重量,以确保暴露在溶剂中的盖帽细胞的面积和体积,平均而言,尽可能接近从平衡的显式溶剂模拟中计算出来的结果。接触面是基面,这意味着随着溶剂重量的变化,内部细胞保持不变。我们使用hiv蛋白酶的高质量轨迹来测试我们模型的一致性,这是一种具有柔性环和开合转换的二聚体。我们还将结果与基于区间算法的高斯-博内方法进行了比较。最佳溶剂参数快速收敛,我们用它来说明与显式模型相比,最近提出的两种方法相比,Laguerre-Intersection方法的保真度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LAGUERRE-INTERSECTION METHOD FOR IMPLICIT SOLVATION.

Explicit solvent molecular dynamics simulations of a macromolecule are slow as the number of solvent atoms considered typically increases by order of magnitude. Implicit methods introduce surface-dependent corrections to the force field, gaining speed at the expense of accuracy. Properties such as molecular interface surfaces, volumes and cavities are captured by Laguerre tessellations of macromolecules. However, Laguerre cells of exterior atoms tend to be overly large or unbounded. Our method, the inclusion-exclusion based Laguerre-Intersection method, caps cells in a physically accurate manner by considering the intersection of the space-filling diagram with the Laguerre tessellation. We optimize an adjustable parameter, the weight, to ensure the areas and volumes of capped cells exposed to solvent are as close as possible, on average, to those computed from equilibrated explicit solvent simulations. The contact planes are radical planes, meaning that as the solvent weight is varied, interior cells remain constant. We test the consistency of our model using a high-quality trajectory of HIV-protease, a dimer with flexible loops and open-close transitions. We also compare our results with interval-arithmetic Gauss-Bonnet based method. Optimal solvent parameters quickly converge, which we use to illustrate the increased fidelity of the Laguerre-Intersection method over two recently proposed methods as compared to the explicit model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
期刊最新文献
On morphs of 1-plane graphs A Geometric Approach to Inelastic Collapse Near-optimal algorithms for point-line fitting problems Algorithms for approximate sparse regression and nearest induced hulls Recognizing weighted and seeded disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1