Debbie C Crans, LaRee Henry, Gabriel Cardiff, Barry I Posner
{"title":"钒作为抗糖尿病或抗癌药物的发展:临床和历史的观点。","authors":"Debbie C Crans, LaRee Henry, Gabriel Cardiff, Barry I Posner","doi":"10.1515/9783110527872-014","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium has been known for centuries to have beneficial effects on health and has the potential to be used as an alternative to other diabetic and anticancer medicines. The beneficial effects of vanadium salts or organic compounds have been explored in vitro, ex vivo, and in vivo in animal and human studies. A consensus among researchers is that increased bioavailability of these compounds could markedly increase the efficacy of this class of compounds. In addition, because many commercially available vanadium derivatives are being used by body builders to enhance performance, more understanding of their mode of action is desirable. Future studies of various vanadium compounds need to evaluate their biodistribution, biotransformation, and the effects of food and formulation on the bioavailability of the compounds. To date, most studies in humans have employed vanadium salts, mainly vanadyl sulfate, and dose-limiting side effects were reported at therapeutic doses. One organic vanadium compound, bis(ethylmaltolato)oxovanadium(IV), had improved efficacy compared to the vanadyl sulfate and was selected for Phase 1 and 2 clinical trials. Future studies should be conducted as randomized, placebo controlled trials lasting several months, with monitoring of both fasting blood glucose and hemoglobin A1c. Now, the most promising potential uses of vanadium compounds are as nutritional supplements to control glucose levels and perhaps, as an anticancer agent potentiated by immunotherapy.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"19 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110527872-014","citationCount":"47","resultStr":"{\"title\":\"Developing Vanadium as an Antidiabetic or Anticancer Drug: A Clinical and Historical Perspective.\",\"authors\":\"Debbie C Crans, LaRee Henry, Gabriel Cardiff, Barry I Posner\",\"doi\":\"10.1515/9783110527872-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vanadium has been known for centuries to have beneficial effects on health and has the potential to be used as an alternative to other diabetic and anticancer medicines. The beneficial effects of vanadium salts or organic compounds have been explored in vitro, ex vivo, and in vivo in animal and human studies. A consensus among researchers is that increased bioavailability of these compounds could markedly increase the efficacy of this class of compounds. In addition, because many commercially available vanadium derivatives are being used by body builders to enhance performance, more understanding of their mode of action is desirable. Future studies of various vanadium compounds need to evaluate their biodistribution, biotransformation, and the effects of food and formulation on the bioavailability of the compounds. To date, most studies in humans have employed vanadium salts, mainly vanadyl sulfate, and dose-limiting side effects were reported at therapeutic doses. One organic vanadium compound, bis(ethylmaltolato)oxovanadium(IV), had improved efficacy compared to the vanadyl sulfate and was selected for Phase 1 and 2 clinical trials. Future studies should be conducted as randomized, placebo controlled trials lasting several months, with monitoring of both fasting blood glucose and hemoglobin A1c. Now, the most promising potential uses of vanadium compounds are as nutritional supplements to control glucose levels and perhaps, as an anticancer agent potentiated by immunotherapy.</p>\",\"PeriodicalId\":18698,\"journal\":{\"name\":\"Metal ions in life sciences\",\"volume\":\"19 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/9783110527872-014\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal ions in life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110527872-014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110527872-014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing Vanadium as an Antidiabetic or Anticancer Drug: A Clinical and Historical Perspective.
Vanadium has been known for centuries to have beneficial effects on health and has the potential to be used as an alternative to other diabetic and anticancer medicines. The beneficial effects of vanadium salts or organic compounds have been explored in vitro, ex vivo, and in vivo in animal and human studies. A consensus among researchers is that increased bioavailability of these compounds could markedly increase the efficacy of this class of compounds. In addition, because many commercially available vanadium derivatives are being used by body builders to enhance performance, more understanding of their mode of action is desirable. Future studies of various vanadium compounds need to evaluate their biodistribution, biotransformation, and the effects of food and formulation on the bioavailability of the compounds. To date, most studies in humans have employed vanadium salts, mainly vanadyl sulfate, and dose-limiting side effects were reported at therapeutic doses. One organic vanadium compound, bis(ethylmaltolato)oxovanadium(IV), had improved efficacy compared to the vanadyl sulfate and was selected for Phase 1 and 2 clinical trials. Future studies should be conducted as randomized, placebo controlled trials lasting several months, with monitoring of both fasting blood glucose and hemoglobin A1c. Now, the most promising potential uses of vanadium compounds are as nutritional supplements to control glucose levels and perhaps, as an anticancer agent potentiated by immunotherapy.