David W Freeman, Ronald S Petralia, Ya-Xian Wang, Mark P Mattson, Pamela J Yao
{"title":"海马突触前室和突触后室线粒体的大小和强度不同。","authors":"David W Freeman, Ronald S Petralia, Ya-Xian Wang, Mark P Mattson, Pamela J Yao","doi":"10.19185/matters.201711000009","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental observations have hinted that, in different compartments of a neuron, mitochondria can be different in their structure, behavior and activity. However, mitochondria have never been systematically compared at the subcellular level in neurons. Using electron microscopy, we analyzed several thousands of mitochondria in the synapses of rat hippocampal neurons <i>in vitro</i> and <i>in vivo</i>. We focused on examining the intensity and size of mitochondria as these structural features have been correlated to the activity of mitochondria. We compared mitochondria in the presynaptic compartment to those in the postsynaptic compartment. We found that, at least in the synapses of hippocampal neurons, presynaptic mitochondria are smaller in diameter and overall higher in intensity (darker) than postsynaptic mitochondria. Our finding highlights the need for developing technologies that would measure the activity of individual mitochondria at single-mitochondria resolution in real time.</p>","PeriodicalId":18333,"journal":{"name":"Matters","volume":"2017 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492946/pdf/nihms-1017333.pdf","citationCount":"14","resultStr":"{\"title\":\"Mitochondria in hippocampal presynaptic and postsynaptic compartments differ in size as well as intensity.\",\"authors\":\"David W Freeman, Ronald S Petralia, Ya-Xian Wang, Mark P Mattson, Pamela J Yao\",\"doi\":\"10.19185/matters.201711000009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental observations have hinted that, in different compartments of a neuron, mitochondria can be different in their structure, behavior and activity. However, mitochondria have never been systematically compared at the subcellular level in neurons. Using electron microscopy, we analyzed several thousands of mitochondria in the synapses of rat hippocampal neurons <i>in vitro</i> and <i>in vivo</i>. We focused on examining the intensity and size of mitochondria as these structural features have been correlated to the activity of mitochondria. We compared mitochondria in the presynaptic compartment to those in the postsynaptic compartment. We found that, at least in the synapses of hippocampal neurons, presynaptic mitochondria are smaller in diameter and overall higher in intensity (darker) than postsynaptic mitochondria. Our finding highlights the need for developing technologies that would measure the activity of individual mitochondria at single-mitochondria resolution in real time.</p>\",\"PeriodicalId\":18333,\"journal\":{\"name\":\"Matters\",\"volume\":\"2017 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492946/pdf/nihms-1017333.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19185/matters.201711000009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19185/matters.201711000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Mitochondria in hippocampal presynaptic and postsynaptic compartments differ in size as well as intensity.
Experimental observations have hinted that, in different compartments of a neuron, mitochondria can be different in their structure, behavior and activity. However, mitochondria have never been systematically compared at the subcellular level in neurons. Using electron microscopy, we analyzed several thousands of mitochondria in the synapses of rat hippocampal neurons in vitro and in vivo. We focused on examining the intensity and size of mitochondria as these structural features have been correlated to the activity of mitochondria. We compared mitochondria in the presynaptic compartment to those in the postsynaptic compartment. We found that, at least in the synapses of hippocampal neurons, presynaptic mitochondria are smaller in diameter and overall higher in intensity (darker) than postsynaptic mitochondria. Our finding highlights the need for developing technologies that would measure the activity of individual mitochondria at single-mitochondria resolution in real time.