David L Haskins, Robert M Gogal, Tracey D Tuberville
{"title":"蛇作为汞污染的新生物标志物:综述。","authors":"David L Haskins, Robert M Gogal, Tracey D Tuberville","doi":"10.1007/398_2019_26","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury (Hg) is an environmental contaminant that has been reported in many wildlife species worldwide. The organic form of Hg bioaccumulates in higher trophic levels, and thus, long-lived predators are at risk for higher Hg exposure. Although ecological risk assessments for contaminants such as Hg include pertinent receptor species, snakes are rarely considered, despite their high trophic status and potential to accumulate high levels of Hg. Our current knowledge of these reptiles suggests that snakes may be useful novel biomarkers to monitor contaminated environments. The few available studies show that snakes can bioaccumulate significant amounts of Hg. However, little is known about the role of snakes in Hg transport in the environment or the individual-level effects of Hg exposure in this group of reptiles. This is a major concern, as snakes often serve as important prey for a variety of taxa within ecosystems (including humans). In this review, we compiled and analyzed the results of over 30 studies to discuss the impact of Hg on snakes, specifically sources of exposure, bioaccumulation, health consequences, and specific scientific knowledge gaps regarding these moderate to high trophic predators.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"249 ","pages":"133-152"},"PeriodicalIF":6.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2019_26","citationCount":"20","resultStr":"{\"title\":\"Snakes as Novel Biomarkers of Mercury Contamination: A Review.\",\"authors\":\"David L Haskins, Robert M Gogal, Tracey D Tuberville\",\"doi\":\"10.1007/398_2019_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mercury (Hg) is an environmental contaminant that has been reported in many wildlife species worldwide. The organic form of Hg bioaccumulates in higher trophic levels, and thus, long-lived predators are at risk for higher Hg exposure. Although ecological risk assessments for contaminants such as Hg include pertinent receptor species, snakes are rarely considered, despite their high trophic status and potential to accumulate high levels of Hg. Our current knowledge of these reptiles suggests that snakes may be useful novel biomarkers to monitor contaminated environments. The few available studies show that snakes can bioaccumulate significant amounts of Hg. However, little is known about the role of snakes in Hg transport in the environment or the individual-level effects of Hg exposure in this group of reptiles. This is a major concern, as snakes often serve as important prey for a variety of taxa within ecosystems (including humans). In this review, we compiled and analyzed the results of over 30 studies to discuss the impact of Hg on snakes, specifically sources of exposure, bioaccumulation, health consequences, and specific scientific knowledge gaps regarding these moderate to high trophic predators.</p>\",\"PeriodicalId\":21182,\"journal\":{\"name\":\"Reviews of environmental contamination and toxicology\",\"volume\":\"249 \",\"pages\":\"133-152\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/398_2019_26\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of environmental contamination and toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/398_2019_26\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of environmental contamination and toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/398_2019_26","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Snakes as Novel Biomarkers of Mercury Contamination: A Review.
Mercury (Hg) is an environmental contaminant that has been reported in many wildlife species worldwide. The organic form of Hg bioaccumulates in higher trophic levels, and thus, long-lived predators are at risk for higher Hg exposure. Although ecological risk assessments for contaminants such as Hg include pertinent receptor species, snakes are rarely considered, despite their high trophic status and potential to accumulate high levels of Hg. Our current knowledge of these reptiles suggests that snakes may be useful novel biomarkers to monitor contaminated environments. The few available studies show that snakes can bioaccumulate significant amounts of Hg. However, little is known about the role of snakes in Hg transport in the environment or the individual-level effects of Hg exposure in this group of reptiles. This is a major concern, as snakes often serve as important prey for a variety of taxa within ecosystems (including humans). In this review, we compiled and analyzed the results of over 30 studies to discuss the impact of Hg on snakes, specifically sources of exposure, bioaccumulation, health consequences, and specific scientific knowledge gaps regarding these moderate to high trophic predators.
期刊介绍:
Reviews of Environmental Contamination and Toxicology publishes reviews pertaining to the sources, transport, fate and effects of contaminants in the environment. The journal provides a place for the publication of critical reviews of the current knowledge and understanding of environmental sciences in order to provide insight into contaminant pathways, fate and behavior in environmental compartments and the possible consequences of their presence, with multidisciplinary contributions from the fields of analytical chemistry, biochemistry, biology, ecology, molecular and cellular biology (in an environmental context), and human, wildlife and environmental toxicology.
•Standing on a 55+ year history of publishing environmental toxicology reviews
•Now publishing in journal format boasting rigorous review and expanded editorial board
•Publishing home for extensive environmental reviews dealing with sources, transport, fate and effect of contaminants
•Through Springer Compact agreements, authors from participating institutions can publish Open Choice at no cost to the authors