抗感染临床试验中的分析人群:分析谁?

Scott Evans, Daniel B Rubin, John H Powers, Dean Follmann
{"title":"抗感染临床试验中的分析人群:分析谁?","authors":"Scott Evans, Daniel B Rubin, John H Powers, Dean Follmann","doi":"10.1515/scid-2017-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Investigators can choose to analyze different patient populations in clinical trials. The different analysis populations answer different types of research questions, estimate different quantities, and evaluate the robustness of the trial results. Various analysis populations have different strengths and weaknesses depending on the type of question being addressed and the potential for bias from the selection of various groups of trial participants. We discuss analysis populations in the context of anti-infective clinical trials.</p>","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433381/pdf/nihms-988165.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis Populations in Anti-Infective Clinical Trials: Whom to Analyze?\",\"authors\":\"Scott Evans, Daniel B Rubin, John H Powers, Dean Follmann\",\"doi\":\"10.1515/scid-2017-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Investigators can choose to analyze different patient populations in clinical trials. The different analysis populations answer different types of research questions, estimate different quantities, and evaluate the robustness of the trial results. Various analysis populations have different strengths and weaknesses depending on the type of question being addressed and the potential for bias from the selection of various groups of trial participants. We discuss analysis populations in the context of anti-infective clinical trials.</p>\",\"PeriodicalId\":74867,\"journal\":{\"name\":\"Statistical communications in infectious diseases\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433381/pdf/nihms-988165.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical communications in infectious diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/scid-2017-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/scid-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在临床试验中,研究人员可以选择对不同的患者群体进行分析。不同的分析人群可以回答不同类型的研究问题,估计不同的数量,并评估试验结果的稳健性。不同的分析人群有不同的优缺点,这取决于要解决的问题类型以及选择不同试验参与者群体可能产生的偏差。我们将结合抗感染临床试验讨论分析人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis Populations in Anti-Infective Clinical Trials: Whom to Analyze?

Investigators can choose to analyze different patient populations in clinical trials. The different analysis populations answer different types of research questions, estimate different quantities, and evaluate the robustness of the trial results. Various analysis populations have different strengths and weaknesses depending on the type of question being addressed and the potential for bias from the selection of various groups of trial participants. We discuss analysis populations in the context of anti-infective clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study design approaches for future active-controlled HIV prevention trials. The role of randomization inference in unraveling individual treatment effects in early phase vaccine trials. Nonlinear mixed-effects models for HIV viral load trajectories before and after antiretroviral therapy interruption, incorporating left censoring. Estimation and interpretation of vaccine efficacy in COVID-19 randomized clinical trials Sample size calculation for active-arm trial with counterfactual incidence based on recency assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1