{"title":"在不同机械条件下骑车时双腿肌肉协同作用的比较。","authors":"Javad Esmaeili, Ali Maleki","doi":"10.1007/s13246-019-00767-0","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle synergies are the building blocks for generating movement by the central nervous system (CNS). According to this hypothesis, CNS decreases the complexity of motor control by combination of a small number of muscle synergies. The aim of this work is to investigate similarity of muscle synergies during cycling across various mechanical conditions. Twenty healthy subjects performed three 6- min cycling tasks at over a range of rotational speed (40, 50, and 60 rpm) and resistant torque (3, 5, and 7 N/m). Surface electromyography (sEMG) signals were recorded during pedaling from eight muscles of the right and left legs. We extracted four synchronous muscle synergies by using the non-negative matrix factorization (NMF) method. Mean and standard deviation of the goodness of the signal reconstruction (R<sup>2</sup>) for all subjects was obtained 0.9898 ± 0.0535. We investigated the functional roles of both leg muscles during cycling by synchronous muscle synergy extraction. We compared the muscle synergies extracted from all subjects in all mechanical conditions. The total mean and standard deviation of the similarity of synergy vectors for all subjects in all mechanical conditions was obtained 0.8788 ± 0.0709. We found the high degrees of similarity among the sets of synchronous muscle synergies across mechanical conditions and also across different subjects. Our results demonstrated that different subjects at different mechanical conditions use the same motor control strategies for cycling, despite inter-individual variability of muscle patterns.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 3","pages":"827-838"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-019-00767-0","citationCount":"9","resultStr":"{\"title\":\"Comparison of muscle synergies extracted from both legs during cycling at different mechanical conditions.\",\"authors\":\"Javad Esmaeili, Ali Maleki\",\"doi\":\"10.1007/s13246-019-00767-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Muscle synergies are the building blocks for generating movement by the central nervous system (CNS). According to this hypothesis, CNS decreases the complexity of motor control by combination of a small number of muscle synergies. The aim of this work is to investigate similarity of muscle synergies during cycling across various mechanical conditions. Twenty healthy subjects performed three 6- min cycling tasks at over a range of rotational speed (40, 50, and 60 rpm) and resistant torque (3, 5, and 7 N/m). Surface electromyography (sEMG) signals were recorded during pedaling from eight muscles of the right and left legs. We extracted four synchronous muscle synergies by using the non-negative matrix factorization (NMF) method. Mean and standard deviation of the goodness of the signal reconstruction (R<sup>2</sup>) for all subjects was obtained 0.9898 ± 0.0535. We investigated the functional roles of both leg muscles during cycling by synchronous muscle synergy extraction. We compared the muscle synergies extracted from all subjects in all mechanical conditions. The total mean and standard deviation of the similarity of synergy vectors for all subjects in all mechanical conditions was obtained 0.8788 ± 0.0709. We found the high degrees of similarity among the sets of synchronous muscle synergies across mechanical conditions and also across different subjects. Our results demonstrated that different subjects at different mechanical conditions use the same motor control strategies for cycling, despite inter-individual variability of muscle patterns.</p>\",\"PeriodicalId\":55430,\"journal\":{\"name\":\"Australasian Physical & Engineering Sciences in Medicine\",\"volume\":\"42 3\",\"pages\":\"827-838\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13246-019-00767-0\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Physical & Engineering Sciences in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-019-00767-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00767-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Comparison of muscle synergies extracted from both legs during cycling at different mechanical conditions.
Muscle synergies are the building blocks for generating movement by the central nervous system (CNS). According to this hypothesis, CNS decreases the complexity of motor control by combination of a small number of muscle synergies. The aim of this work is to investigate similarity of muscle synergies during cycling across various mechanical conditions. Twenty healthy subjects performed three 6- min cycling tasks at over a range of rotational speed (40, 50, and 60 rpm) and resistant torque (3, 5, and 7 N/m). Surface electromyography (sEMG) signals were recorded during pedaling from eight muscles of the right and left legs. We extracted four synchronous muscle synergies by using the non-negative matrix factorization (NMF) method. Mean and standard deviation of the goodness of the signal reconstruction (R2) for all subjects was obtained 0.9898 ± 0.0535. We investigated the functional roles of both leg muscles during cycling by synchronous muscle synergy extraction. We compared the muscle synergies extracted from all subjects in all mechanical conditions. The total mean and standard deviation of the similarity of synergy vectors for all subjects in all mechanical conditions was obtained 0.8788 ± 0.0709. We found the high degrees of similarity among the sets of synchronous muscle synergies across mechanical conditions and also across different subjects. Our results demonstrated that different subjects at different mechanical conditions use the same motor control strategies for cycling, despite inter-individual variability of muscle patterns.
期刊介绍:
Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to:
- Medical physics in radiotherapy
- Medical physics in diagnostic radiology
- Medical physics in nuclear medicine
- Mathematical modelling applied to medicine and human biology
- Clinical biomedical engineering
- Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals;
- Medical imaging - contributions to new and improved methods;
- Modelling of physiological systems
- Image processing to extract information from images, e.g. fMRI, CT, etc.;
- Biomechanics, especially with applications to orthopaedics.
- Nanotechnology in medicine
APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor.
APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.