一个基于系统模拟的meta分析框架,用于预测脱发的生理生物标志物。

IF 1.9 3区 生物学 Q2 BIOLOGY Journal of Biological Research-Thessaloniki Pub Date : 2019-04-04 eCollection Date: 2019-12-01 DOI:10.1186/s40709-019-0094-x
Syed Aun Muhammad, Nighat Fatima, Rehan Zafar Paracha, Amjad Ali, Jake Y Chen
{"title":"一个基于系统模拟的meta分析框架,用于预测脱发的生理生物标志物。","authors":"Syed Aun Muhammad,&nbsp;Nighat Fatima,&nbsp;Rehan Zafar Paracha,&nbsp;Amjad Ali,&nbsp;Jake Y Chen","doi":"10.1186/s40709-019-0094-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alopecia or hair loss is a complex polygenetic and psychologically devastating disease affecting millions of men and women globally. Since the gene annotation and environmental knowledge is limited for alopecia, a systematic analysis for the identification of candidate biomarkers is required that could provide potential therapeutic targets for hair loss therapy.</p><p><strong>Results: </strong>We designed an interactive framework to perform a meta-analytical study based on differential expression analysis, systems biology, and functional proteomic investigations. We analyzed eight publicly available microarray datasets and found 12 potential candidate biomarkers including three extracellular proteins from the list of differentially expressed genes with a <i>p</i>-value < 0.05. After expression profiling and functional analysis, we studied protein-protein interactions and observed functional associations of source proteins including WIF1, SPON1, LYZ, GPRC5B, PTPRE, ZFP36L2, HBB, PHF15, LMCD1, KRT35 and VAV3 with target proteins including APCDD1, WNT1, WNT3A, SHH, ESRI, TGFB1, and APP. Pathway analysis of these molecules revealed their role in major physiological reactions including protein metabolism, signal transduction, WNT, BMP, EDA, NOTCH and SHH pathways. These pathways regulate hair growth, hair follicle differentiation, pigmentation, and morphogenesis. We studied the regulatory role of β-catenin, Nf-kappa B, cytokines and retinoic acid in the development of hair growth. Therefore, the differential expression of these significant proteins would affect the normal level and could cause aberrations in hair growth.</p><p><strong>Conclusion: </strong>Our integrative approach helps to prioritize the biomarkers that ultimately lessen the economic burden of experimental studies. It will also be valuable to discover mutants in genomic data in order to increase the identification of new biomarkers for similar problems.</p>","PeriodicalId":50251,"journal":{"name":"Journal of Biological Research-Thessaloniki","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-019-0094-x","citationCount":"12","resultStr":"{\"title\":\"A systematic simulation-based meta-analytical framework for prediction of physiological biomarkers in alopecia.\",\"authors\":\"Syed Aun Muhammad,&nbsp;Nighat Fatima,&nbsp;Rehan Zafar Paracha,&nbsp;Amjad Ali,&nbsp;Jake Y Chen\",\"doi\":\"10.1186/s40709-019-0094-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alopecia or hair loss is a complex polygenetic and psychologically devastating disease affecting millions of men and women globally. Since the gene annotation and environmental knowledge is limited for alopecia, a systematic analysis for the identification of candidate biomarkers is required that could provide potential therapeutic targets for hair loss therapy.</p><p><strong>Results: </strong>We designed an interactive framework to perform a meta-analytical study based on differential expression analysis, systems biology, and functional proteomic investigations. We analyzed eight publicly available microarray datasets and found 12 potential candidate biomarkers including three extracellular proteins from the list of differentially expressed genes with a <i>p</i>-value < 0.05. After expression profiling and functional analysis, we studied protein-protein interactions and observed functional associations of source proteins including WIF1, SPON1, LYZ, GPRC5B, PTPRE, ZFP36L2, HBB, PHF15, LMCD1, KRT35 and VAV3 with target proteins including APCDD1, WNT1, WNT3A, SHH, ESRI, TGFB1, and APP. Pathway analysis of these molecules revealed their role in major physiological reactions including protein metabolism, signal transduction, WNT, BMP, EDA, NOTCH and SHH pathways. These pathways regulate hair growth, hair follicle differentiation, pigmentation, and morphogenesis. We studied the regulatory role of β-catenin, Nf-kappa B, cytokines and retinoic acid in the development of hair growth. Therefore, the differential expression of these significant proteins would affect the normal level and could cause aberrations in hair growth.</p><p><strong>Conclusion: </strong>Our integrative approach helps to prioritize the biomarkers that ultimately lessen the economic burden of experimental studies. It will also be valuable to discover mutants in genomic data in order to increase the identification of new biomarkers for similar problems.</p>\",\"PeriodicalId\":50251,\"journal\":{\"name\":\"Journal of Biological Research-Thessaloniki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40709-019-0094-x\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Research-Thessaloniki\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40709-019-0094-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Thessaloniki","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-019-0094-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 12

摘要

背景:脱发是一种复杂的多基因和心理破坏性疾病,影响着全球数百万男性和女性。由于脱发的基因注释和环境知识有限,因此需要对候选生物标志物进行系统的分析,从而为脱发治疗提供潜在的治疗靶点。结果:我们设计了一个交互式框架来进行基于差异表达分析、系统生物学和功能蛋白质组学研究的meta分析研究。我们分析了8个公开可用的微阵列数据集,发现了12个潜在的候选生物标志物,其中包括来自差异表达基因列表的3个细胞外蛋白,其p值为p值。结论:我们的综合方法有助于优先考虑最终减轻实验研究经济负担的生物标志物。在基因组数据中发现突变体,以增加对类似问题的新生物标记物的识别,也将是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic simulation-based meta-analytical framework for prediction of physiological biomarkers in alopecia.

Background: Alopecia or hair loss is a complex polygenetic and psychologically devastating disease affecting millions of men and women globally. Since the gene annotation and environmental knowledge is limited for alopecia, a systematic analysis for the identification of candidate biomarkers is required that could provide potential therapeutic targets for hair loss therapy.

Results: We designed an interactive framework to perform a meta-analytical study based on differential expression analysis, systems biology, and functional proteomic investigations. We analyzed eight publicly available microarray datasets and found 12 potential candidate biomarkers including three extracellular proteins from the list of differentially expressed genes with a p-value < 0.05. After expression profiling and functional analysis, we studied protein-protein interactions and observed functional associations of source proteins including WIF1, SPON1, LYZ, GPRC5B, PTPRE, ZFP36L2, HBB, PHF15, LMCD1, KRT35 and VAV3 with target proteins including APCDD1, WNT1, WNT3A, SHH, ESRI, TGFB1, and APP. Pathway analysis of these molecules revealed their role in major physiological reactions including protein metabolism, signal transduction, WNT, BMP, EDA, NOTCH and SHH pathways. These pathways regulate hair growth, hair follicle differentiation, pigmentation, and morphogenesis. We studied the regulatory role of β-catenin, Nf-kappa B, cytokines and retinoic acid in the development of hair growth. Therefore, the differential expression of these significant proteins would affect the normal level and could cause aberrations in hair growth.

Conclusion: Our integrative approach helps to prioritize the biomarkers that ultimately lessen the economic burden of experimental studies. It will also be valuable to discover mutants in genomic data in order to increase the identification of new biomarkers for similar problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal of Biological Research-Thessaloniki is a peer-reviewed, open access, international journal that publishes articles providing novel insights into the major fields of biology. Topics covered in Journal of Biological Research-Thessaloniki include, but are not limited to: molecular biology, cytology, genetics, evolutionary biology, morphology, development and differentiation, taxonomy, bioinformatics, physiology, marine biology, behaviour, ecology and conservation.
期刊最新文献
Circ_0000620 acts as an oncogenic factor in gastric cancer through regulating MMP2 expression via sponging miR-671-5p. Peroxiredoxin-6 regulates p38-mediated epithelial-mesenchymal transition in HCT116 colon cancer cells. Nesfatin-1 protects H9c2 cardiomyocytes against cobalt chloride-induced hypoxic injury by modulating the MAPK and Notch1 signaling pathways. LncRNA FBXL19-AS1 promotes proliferation and metastasis of cervical cancer through upregulating COL1A1 as a sponge of miR-193a-5p. CircCNIH4 inhibits gastric cancer progression via regulating DKK2 and FRZB expression and Wnt/β-catenin pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1