结合ProteusPLUS PBS专用机器上的范围移位器测量各种气隙下铅笔状质子束的空中点尺寸,并与质子剂量计算算法进行比较。

Q3 Biochemistry, Genetics and Molecular Biology Australasian Physical & Engineering Sciences in Medicine Pub Date : 2019-09-01 Epub Date: 2019-06-20 DOI:10.1007/s13246-019-00772-3
Suresh Rana, E James Jebaseelan Samuel
{"title":"结合ProteusPLUS PBS专用机器上的范围移位器测量各种气隙下铅笔状质子束的空中点尺寸,并与质子剂量计算算法进行比较。","authors":"Suresh Rana,&nbsp;E James Jebaseelan Samuel","doi":"10.1007/s13246-019-00772-3","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to (i) investigate the impact of various air gaps in conjunction with a range shifter of 7.5 cm water-equivalent-thickness (WET) on in-air spot size of a pencil proton beam at the isocenter and off-axis points, and (ii) compare the treatment planning system (TPS) calculated spot sizes against the measured spot sizes. A scintillation detector has been utilized to measure the in-air spot sizes at the isocenter. The air gap was varied from 0 to 35 cm at an increment of 5 cm. For each air gap, a single spot pencil proton beam of various energies (110-225 MeV) was delivered to the scintillation detector. By mimicking the experimental setup in RayStation TPS, proton dose calculations were performed using pencil beam (RS-PB) and Monte Carlo (RS-MC) dose calculation algorithms. The calculated spot sizes (RS-PB and RS-MC) were then compared against the measured spot sizes. For a comparative purpose, the spot sizes of each measured energy for different air gaps of (5-35 cm) were compared against that of 0 cm air gap. The results of the 5 cm air gap showed an increase in spot size by ≤ 0.6 mm for all energies. For the largest air gap (35 cm) in the current study, the spot size increased by 3.0 mm for the highest energy (225 MeV) and by 9.2 mm for the lowest energy (110 MeV). For the 0 cm air gap, the agreement between the TPS-calculated (RS-PB and RS-MC) and measured spot sizes were within ± 0.1 mm. For the 35 cm air gap, the RS-PB overpredicted spot sizes by 0.3-0.8 mm, whereas the RS-MC computed spot sizes were within ± 0.3 mm of measured spot sizes. In conclusion, spot size increment is dependent on the energy and air gap. The increase in spot size was more pronounced at lower energies ( < 150 MeV) for all air gaps. The comparison between the TPS calculated and measured spot sizes showed that the RS-MC is more accurate (within ± 0.3 mm), whereas the RS-PB overpredicted (up to 0.8 mm) the spot sizes when a range shifter (7.5 cm WET) and large air gaps are encountered in the proton beam path.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 3","pages":"853-862"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-019-00772-3","citationCount":"9","resultStr":"{\"title\":\"Measurements of in-air spot size of pencil proton beam for various air gaps in conjunction with a range shifter on a ProteusPLUS PBS dedicated machine and comparison to the proton dose calculation algorithms.\",\"authors\":\"Suresh Rana,&nbsp;E James Jebaseelan Samuel\",\"doi\":\"10.1007/s13246-019-00772-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study is to (i) investigate the impact of various air gaps in conjunction with a range shifter of 7.5 cm water-equivalent-thickness (WET) on in-air spot size of a pencil proton beam at the isocenter and off-axis points, and (ii) compare the treatment planning system (TPS) calculated spot sizes against the measured spot sizes. A scintillation detector has been utilized to measure the in-air spot sizes at the isocenter. The air gap was varied from 0 to 35 cm at an increment of 5 cm. For each air gap, a single spot pencil proton beam of various energies (110-225 MeV) was delivered to the scintillation detector. By mimicking the experimental setup in RayStation TPS, proton dose calculations were performed using pencil beam (RS-PB) and Monte Carlo (RS-MC) dose calculation algorithms. The calculated spot sizes (RS-PB and RS-MC) were then compared against the measured spot sizes. For a comparative purpose, the spot sizes of each measured energy for different air gaps of (5-35 cm) were compared against that of 0 cm air gap. The results of the 5 cm air gap showed an increase in spot size by ≤ 0.6 mm for all energies. For the largest air gap (35 cm) in the current study, the spot size increased by 3.0 mm for the highest energy (225 MeV) and by 9.2 mm for the lowest energy (110 MeV). For the 0 cm air gap, the agreement between the TPS-calculated (RS-PB and RS-MC) and measured spot sizes were within ± 0.1 mm. For the 35 cm air gap, the RS-PB overpredicted spot sizes by 0.3-0.8 mm, whereas the RS-MC computed spot sizes were within ± 0.3 mm of measured spot sizes. In conclusion, spot size increment is dependent on the energy and air gap. The increase in spot size was more pronounced at lower energies ( < 150 MeV) for all air gaps. The comparison between the TPS calculated and measured spot sizes showed that the RS-MC is more accurate (within ± 0.3 mm), whereas the RS-PB overpredicted (up to 0.8 mm) the spot sizes when a range shifter (7.5 cm WET) and large air gaps are encountered in the proton beam path.</p>\",\"PeriodicalId\":55430,\"journal\":{\"name\":\"Australasian Physical & Engineering Sciences in Medicine\",\"volume\":\"42 3\",\"pages\":\"853-862\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13246-019-00772-3\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Physical & Engineering Sciences in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-019-00772-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00772-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9

摘要

本研究的目的是:(i)研究各种气隙与7.5 cm水当量厚度的范围移位器(WET)对铅笔状质子束在等中心和离轴点的空气中光斑大小的影响,以及(ii)比较处理计划系统(TPS)计算的光斑大小与测量的光斑大小。利用闪烁探测器测量了等心处的空气光斑大小。气隙变化范围为0 ~ 35 cm,每增加5 cm。对于每个气隙,一个不同能量(110-225 MeV)的单点铅笔质子束被传送到闪烁探测器。通过模拟RayStation TPS中的实验设置,使用铅笔束(RS-PB)和蒙特卡罗(RS-MC)剂量计算算法进行质子剂量计算。然后将计算的光斑大小(RS-PB和RS-MC)与测量的光斑大小进行比较。为了进行比较,将(5-35 cm)不同气隙下每个测量能量的光斑大小与0 cm气隙下的光斑大小进行了比较。5cm气隙的结果表明,在所有能量下,光斑尺寸增加≤0.6 mm。对于目前研究中最大的气隙(35 cm),光斑尺寸在最高能量(225 MeV)时增加了3.0 mm,在最低能量(110 MeV)时增加了9.2 mm。对于0 cm气隙,tps计算(RS-PB和RS-MC)与实测光斑尺寸的一致性在±0.1 mm以内。对于35 cm气隙,RS-PB对光斑尺寸的预测过高了0.3 ~ 0.8 mm,而RS-MC计算的光斑尺寸与实测值的误差在±0.3 mm以内。综上所述,光斑尺寸增量取决于能量和气隙。光斑尺寸的增加在较低能量时更为明显(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurements of in-air spot size of pencil proton beam for various air gaps in conjunction with a range shifter on a ProteusPLUS PBS dedicated machine and comparison to the proton dose calculation algorithms.

The purpose of this study is to (i) investigate the impact of various air gaps in conjunction with a range shifter of 7.5 cm water-equivalent-thickness (WET) on in-air spot size of a pencil proton beam at the isocenter and off-axis points, and (ii) compare the treatment planning system (TPS) calculated spot sizes against the measured spot sizes. A scintillation detector has been utilized to measure the in-air spot sizes at the isocenter. The air gap was varied from 0 to 35 cm at an increment of 5 cm. For each air gap, a single spot pencil proton beam of various energies (110-225 MeV) was delivered to the scintillation detector. By mimicking the experimental setup in RayStation TPS, proton dose calculations were performed using pencil beam (RS-PB) and Monte Carlo (RS-MC) dose calculation algorithms. The calculated spot sizes (RS-PB and RS-MC) were then compared against the measured spot sizes. For a comparative purpose, the spot sizes of each measured energy for different air gaps of (5-35 cm) were compared against that of 0 cm air gap. The results of the 5 cm air gap showed an increase in spot size by ≤ 0.6 mm for all energies. For the largest air gap (35 cm) in the current study, the spot size increased by 3.0 mm for the highest energy (225 MeV) and by 9.2 mm for the lowest energy (110 MeV). For the 0 cm air gap, the agreement between the TPS-calculated (RS-PB and RS-MC) and measured spot sizes were within ± 0.1 mm. For the 35 cm air gap, the RS-PB overpredicted spot sizes by 0.3-0.8 mm, whereas the RS-MC computed spot sizes were within ± 0.3 mm of measured spot sizes. In conclusion, spot size increment is dependent on the energy and air gap. The increase in spot size was more pronounced at lower energies ( < 150 MeV) for all air gaps. The comparison between the TPS calculated and measured spot sizes showed that the RS-MC is more accurate (within ± 0.3 mm), whereas the RS-PB overpredicted (up to 0.8 mm) the spot sizes when a range shifter (7.5 cm WET) and large air gaps are encountered in the proton beam path.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to: - Medical physics in radiotherapy - Medical physics in diagnostic radiology - Medical physics in nuclear medicine - Mathematical modelling applied to medicine and human biology - Clinical biomedical engineering - Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals; - Medical imaging - contributions to new and improved methods; - Modelling of physiological systems - Image processing to extract information from images, e.g. fMRI, CT, etc.; - Biomechanics, especially with applications to orthopaedics. - Nanotechnology in medicine APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor. APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.
期刊最新文献
Acknowledgment of Reviewers for Volume 35 Acknowledgment of Reviewers for Volume 34 A comparison between EPSON V700 and EPSON V800 scanners for film dosimetry. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. EPSM 2019, Engineering and Physical Sciences in Medicine : 28-30 October 2019, Perth, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1