{"title":"在联合培养中,模拟过氧化氢酶的金纳米颗粒抑制了气态乳杆菌对食源性肠道病原体的拮抗作用。","authors":"Suqin Zhu, Mingyong Zeng, Wei Guo, Guangxin Feng, Haohao Wu","doi":"10.1080/10590501.2019.1591698","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) have been previously shown to induce gut dysbiosis during colitis in mice, but the underlying mechanism is not clear yet. Here, we evaluated the effects of AuNPs (5 nm diameter, coated with tannic acid, polyvinylpyrrolidone or citrate) on H<sub>2</sub>O<sub>2</sub> accumulation and pathogen antagonization by an intestinal strain of <i>Lactobacillus gasseri</i> under aerobic cultural conditions. AuNPs (0.65 μg/mL) reduced over 50% of H<sub>2</sub>O<sub>2</sub> accumulation by <i>L. gasseri</i>, and significantly inhibited the antagonistic action of <i>L. gasseri</i> on growth of four foodborne enteric pathogens, i.e. <i>Salmonella enterica</i> serovar Typhimurium, <i>Escherichia coli</i>, <i>Listeria monocytogenes</i>, and <i>Staphylococcus aureus</i> in associative cultures.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"37 2","pages":"55-66"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2019.1591698","citationCount":"2","resultStr":"{\"title\":\"Catalase-mimetic gold nanoparticles inhibit the antagonistic action of <i>Lactobacillus gasseri</i> toward foodborne enteric pathogens in associative cultures.\",\"authors\":\"Suqin Zhu, Mingyong Zeng, Wei Guo, Guangxin Feng, Haohao Wu\",\"doi\":\"10.1080/10590501.2019.1591698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold nanoparticles (AuNPs) have been previously shown to induce gut dysbiosis during colitis in mice, but the underlying mechanism is not clear yet. Here, we evaluated the effects of AuNPs (5 nm diameter, coated with tannic acid, polyvinylpyrrolidone or citrate) on H<sub>2</sub>O<sub>2</sub> accumulation and pathogen antagonization by an intestinal strain of <i>Lactobacillus gasseri</i> under aerobic cultural conditions. AuNPs (0.65 μg/mL) reduced over 50% of H<sub>2</sub>O<sub>2</sub> accumulation by <i>L. gasseri</i>, and significantly inhibited the antagonistic action of <i>L. gasseri</i> on growth of four foodborne enteric pathogens, i.e. <i>Salmonella enterica</i> serovar Typhimurium, <i>Escherichia coli</i>, <i>Listeria monocytogenes</i>, and <i>Staphylococcus aureus</i> in associative cultures.</p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"37 2\",\"pages\":\"55-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2019.1591698\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2019.1591698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2019.1591698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Catalase-mimetic gold nanoparticles inhibit the antagonistic action of Lactobacillus gasseri toward foodborne enteric pathogens in associative cultures.
Gold nanoparticles (AuNPs) have been previously shown to induce gut dysbiosis during colitis in mice, but the underlying mechanism is not clear yet. Here, we evaluated the effects of AuNPs (5 nm diameter, coated with tannic acid, polyvinylpyrrolidone or citrate) on H2O2 accumulation and pathogen antagonization by an intestinal strain of Lactobacillus gasseri under aerobic cultural conditions. AuNPs (0.65 μg/mL) reduced over 50% of H2O2 accumulation by L. gasseri, and significantly inhibited the antagonistic action of L. gasseri on growth of four foodborne enteric pathogens, i.e. Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus in associative cultures.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.