Benjamin A Minden-Birkenmaier, Meghan B Meadows, Kasyap Cherukuri, Matthew P Smeltzer, Richard A Smith, Marko Z Radic, Gary L Bowlin
{"title":"麦卢卡蜂蜜对炎症条件下dHL-60细胞因子、趋化因子和基质降解酶释放的影响。","authors":"Benjamin A Minden-Birkenmaier, Meghan B Meadows, Kasyap Cherukuri, Matthew P Smeltzer, Richard A Smith, Marko Z Radic, Gary L Bowlin","doi":"10.20900/mo.20190005","DOIUrl":null,"url":null,"abstract":"<p><p>A large body of <i>in vivo</i> and <i>in vitro</i> evidence indicates that Manuka honey resolves inflammation and promotes healing when applied topically to a wound. In this study, the effect of two different concentrations (0.5% and 3% v/v) of Manuka honey on the release of cytokines, chemokines, and matrix-degrading enzymes from neutrophils was examined using a differentiated HL-60 cell line model in the presence of inflammatory stimuli. The results indicate that 0.5% honey decreased TNF-α, IL-1β, MIP-1α, MIP-1β, IL-12 p70, MMP-9, MMP-1, FGF-13, IL-1ra, and IL-4 release, but increased MIP-3α, Proteinase 3, VEGF, and IL-8 levels. In contrast, 3% honey reduced the release of all analytes except TNF-α, whose release was increased. Together, these results demonstrate a dose-dependent ability of Manuka honey to modify the release of cytokines, chemokines, and matrix-degrading enzymes that promote or inhibit inflammation and/or healing within a wound. The findings of this study provide further guidance for the future use of Manuka honey in wounds or tissue engineering templates. Future <i>in vivo</i> investigation is warranted to validate the <i>in vitro</i> results and translate these results to physiologically relevant environments.</p>","PeriodicalId":18306,"journal":{"name":"Med One","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594701/pdf/","citationCount":"17","resultStr":"{\"title\":\"The Effect of Manuka Honey on dHL-60 Cytokine, Chemokine, and Matrix-Degrading Enzyme Release under Inflammatory Conditions.\",\"authors\":\"Benjamin A Minden-Birkenmaier, Meghan B Meadows, Kasyap Cherukuri, Matthew P Smeltzer, Richard A Smith, Marko Z Radic, Gary L Bowlin\",\"doi\":\"10.20900/mo.20190005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A large body of <i>in vivo</i> and <i>in vitro</i> evidence indicates that Manuka honey resolves inflammation and promotes healing when applied topically to a wound. In this study, the effect of two different concentrations (0.5% and 3% v/v) of Manuka honey on the release of cytokines, chemokines, and matrix-degrading enzymes from neutrophils was examined using a differentiated HL-60 cell line model in the presence of inflammatory stimuli. The results indicate that 0.5% honey decreased TNF-α, IL-1β, MIP-1α, MIP-1β, IL-12 p70, MMP-9, MMP-1, FGF-13, IL-1ra, and IL-4 release, but increased MIP-3α, Proteinase 3, VEGF, and IL-8 levels. In contrast, 3% honey reduced the release of all analytes except TNF-α, whose release was increased. Together, these results demonstrate a dose-dependent ability of Manuka honey to modify the release of cytokines, chemokines, and matrix-degrading enzymes that promote or inhibit inflammation and/or healing within a wound. The findings of this study provide further guidance for the future use of Manuka honey in wounds or tissue engineering templates. Future <i>in vivo</i> investigation is warranted to validate the <i>in vitro</i> results and translate these results to physiologically relevant environments.</p>\",\"PeriodicalId\":18306,\"journal\":{\"name\":\"Med One\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594701/pdf/\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Med One\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20900/mo.20190005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med One","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/mo.20190005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Manuka Honey on dHL-60 Cytokine, Chemokine, and Matrix-Degrading Enzyme Release under Inflammatory Conditions.
A large body of in vivo and in vitro evidence indicates that Manuka honey resolves inflammation and promotes healing when applied topically to a wound. In this study, the effect of two different concentrations (0.5% and 3% v/v) of Manuka honey on the release of cytokines, chemokines, and matrix-degrading enzymes from neutrophils was examined using a differentiated HL-60 cell line model in the presence of inflammatory stimuli. The results indicate that 0.5% honey decreased TNF-α, IL-1β, MIP-1α, MIP-1β, IL-12 p70, MMP-9, MMP-1, FGF-13, IL-1ra, and IL-4 release, but increased MIP-3α, Proteinase 3, VEGF, and IL-8 levels. In contrast, 3% honey reduced the release of all analytes except TNF-α, whose release was increased. Together, these results demonstrate a dose-dependent ability of Manuka honey to modify the release of cytokines, chemokines, and matrix-degrading enzymes that promote or inhibit inflammation and/or healing within a wound. The findings of this study provide further guidance for the future use of Manuka honey in wounds or tissue engineering templates. Future in vivo investigation is warranted to validate the in vitro results and translate these results to physiologically relevant environments.