{"title":"一种新的个体化药物重新定位方法预测1型糖尿病个体化候选药物。","authors":"Hong Zheng","doi":"10.1515/sagmb-2018-0052","DOIUrl":null,"url":null,"abstract":"<p><p>The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0052","citationCount":"1","resultStr":"{\"title\":\"A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus.\",\"authors\":\"Hong Zheng\",\"doi\":\"10.1515/sagmb-2018-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0052\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus.
The existence of high cost-consuming and high rate of drug failures suggests the promotion of drug repositioning in drug discovery. Existing drug repositioning techniques mainly focus on discovering candidate drugs for a kind of disease, and are not suitable for predicting candidate drugs for an individual sample. Type 1 diabetes mellitus (T1DM) is a disorder of glucose homeostasis caused by autoimmune destruction of the pancreatic β-cell. Here, we present a novel single sample drug repositioning approach for predicting personalized candidate drugs for T1DM. Our method is based on the observation of drug-disease associations by measuring the similarities of individualized pathway aberrance induced by disease and various drugs using a Kolmogorov-Smirnov weighted Enrichment Score algorithm. Using this method, we predicted several underlying candidate drugs for T1DM. Some of them have been reported for the treatment of diabetes mellitus, and some with a current indication to treat other diseases might be repurposed to treat T1DM. This study conducts drug discovery via detecting the functional connections among disease and drug action, on a personalized or customized basis. Our framework provides a rational way for systematic personalized drug discovery of complex diseases and contributes to the future application of custom therapeutic decisions.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.