药物发现和再生医学中的网络模型。

David A Winkler
{"title":"药物发现和再生医学中的网络模型。","authors":"David A Winkler","doi":"10.1016/S1387-2656(08)00005-7","DOIUrl":null,"url":null,"abstract":"<p><p>Network motifs and modelling paradigms are attracting increasing attention as modelling tools in drug design and development, and in regenerative medicine. There is a gradual but inexorable convergence between these hitherto disparate disciplines. This review summarizes some very recent work in these areas, leading to an understanding of the complementary roles networks play and factors driving this convergence: network paradigms can be excellent ways of modelling and understanding drug molecules and their action, an understanding of the robustness and vulnerabilities of biological targets may improve the efficacy of drug design and discovery, drug design has an increasingly large role to play in directing stem cell properties, stem cell regulatory networks can be modelled in useful ways using network models at a reasonable level of scale, and the network tools of drug design are also very useful for the design of biomaterials used in regenerative medicine.</p>","PeriodicalId":79566,"journal":{"name":"Biotechnology annual review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1387-2656(08)00005-7","citationCount":"9","resultStr":"{\"title\":\"Network models in drug discovery and regenerative medicine.\",\"authors\":\"David A Winkler\",\"doi\":\"10.1016/S1387-2656(08)00005-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Network motifs and modelling paradigms are attracting increasing attention as modelling tools in drug design and development, and in regenerative medicine. There is a gradual but inexorable convergence between these hitherto disparate disciplines. This review summarizes some very recent work in these areas, leading to an understanding of the complementary roles networks play and factors driving this convergence: network paradigms can be excellent ways of modelling and understanding drug molecules and their action, an understanding of the robustness and vulnerabilities of biological targets may improve the efficacy of drug design and discovery, drug design has an increasingly large role to play in directing stem cell properties, stem cell regulatory networks can be modelled in useful ways using network models at a reasonable level of scale, and the network tools of drug design are also very useful for the design of biomaterials used in regenerative medicine.</p>\",\"PeriodicalId\":79566,\"journal\":{\"name\":\"Biotechnology annual review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1387-2656(08)00005-7\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology annual review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/S1387-2656(08)00005-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology annual review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S1387-2656(08)00005-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

网络基序和建模范式作为药物设计和开发以及再生医学中的建模工具越来越受到关注。在这些迄今为止完全不同的学科之间,有一种渐进但不可阻挡的趋同。这篇综述总结了这些领域的一些最新工作,从而了解网络发挥的互补作用和推动这种融合的因素:网络范式可以是建模和理解药物分子及其作用的极好方法,对生物靶点的稳健性和脆弱性的理解可以提高药物设计和发现的功效,药物设计在指导干细胞特性方面发挥着越来越大的作用,干细胞调节网络可以在合理的规模水平上使用网络模型以有用的方式建模。药物设计的网络工具对于再生医学中使用的生物材料的设计也非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network models in drug discovery and regenerative medicine.

Network motifs and modelling paradigms are attracting increasing attention as modelling tools in drug design and development, and in regenerative medicine. There is a gradual but inexorable convergence between these hitherto disparate disciplines. This review summarizes some very recent work in these areas, leading to an understanding of the complementary roles networks play and factors driving this convergence: network paradigms can be excellent ways of modelling and understanding drug molecules and their action, an understanding of the robustness and vulnerabilities of biological targets may improve the efficacy of drug design and discovery, drug design has an increasingly large role to play in directing stem cell properties, stem cell regulatory networks can be modelled in useful ways using network models at a reasonable level of scale, and the network tools of drug design are also very useful for the design of biomaterials used in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The social network of a cell: recent advances in interactome mapping. Gene expression microarray data analysis demystified. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Ethnomedicines and ethnomedicinal phytophores against herpesviruses. Free radical processes in green tea polyphenols (GTP) investigated by electron paramagnetic resonance (EPR) spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1