苏云金芽孢杆菌A1470菌株产生的新型细胞毒蛋白parasporin-4的鉴定与特性研究。

Shiro Okumura, Hiroyuki Saitoh, Tomoyuki Ishikawa, Eiichi Mizuki, Kuniyo Inouye
{"title":"苏云金芽孢杆菌A1470菌株产生的新型细胞毒蛋白parasporin-4的鉴定与特性研究。","authors":"Shiro Okumura,&nbsp;Hiroyuki Saitoh,&nbsp;Tomoyuki Ishikawa,&nbsp;Eiichi Mizuki,&nbsp;Kuniyo Inouye","doi":"10.1016/S1387-2656(08)00009-4","DOIUrl":null,"url":null,"abstract":"<p><p>In 1901, a unique bacterium was isolated as a pathogen of the sotto disease of the silkmoth larvae, and later in 1915, the organism was described as Bacillus thuringiensis. Since the discovery, this bacterium has widely attracted attention of not only insect pathologists but many other scientists who are interested in strong and specific insecticidal activity associated with inclusion bodies of B. thuringiensis. This has led to the recent worldwide development of B. thuringiensis-based microbial insecticides and insect-resistant transgenic plants, as well as the epoch-making discovery of parasporin, a cancer cell-specific cytotoxin. In the review, we introduce a detection study of interaction between inclusion proteins of B. thuringiensis and brush border membrane of insects using surface plasmon resonance-based biosensor, and then identification and cloning of parasporin-4, a latest cancer cell-killing protein produced by B. thuringiensis A1470 strain. Inclusion bodies of the parasporin-4 produced by recombinant Escherichia coli were solubilized and activated with a new method and purified by an anion-exchange chromatography. At last the characterization of the recombinant parasporin-4 was shown.</p>","PeriodicalId":79566,"journal":{"name":"Biotechnology annual review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1387-2656(08)00009-4","citationCount":"16","resultStr":"{\"title\":\"Identification and characterization of a novel cytotoxic protein, parasporin-4, produced by Bacillus thuringiensis A1470 strain.\",\"authors\":\"Shiro Okumura,&nbsp;Hiroyuki Saitoh,&nbsp;Tomoyuki Ishikawa,&nbsp;Eiichi Mizuki,&nbsp;Kuniyo Inouye\",\"doi\":\"10.1016/S1387-2656(08)00009-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 1901, a unique bacterium was isolated as a pathogen of the sotto disease of the silkmoth larvae, and later in 1915, the organism was described as Bacillus thuringiensis. Since the discovery, this bacterium has widely attracted attention of not only insect pathologists but many other scientists who are interested in strong and specific insecticidal activity associated with inclusion bodies of B. thuringiensis. This has led to the recent worldwide development of B. thuringiensis-based microbial insecticides and insect-resistant transgenic plants, as well as the epoch-making discovery of parasporin, a cancer cell-specific cytotoxin. In the review, we introduce a detection study of interaction between inclusion proteins of B. thuringiensis and brush border membrane of insects using surface plasmon resonance-based biosensor, and then identification and cloning of parasporin-4, a latest cancer cell-killing protein produced by B. thuringiensis A1470 strain. Inclusion bodies of the parasporin-4 produced by recombinant Escherichia coli were solubilized and activated with a new method and purified by an anion-exchange chromatography. At last the characterization of the recombinant parasporin-4 was shown.</p>\",\"PeriodicalId\":79566,\"journal\":{\"name\":\"Biotechnology annual review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1387-2656(08)00009-4\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology annual review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/S1387-2656(08)00009-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology annual review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S1387-2656(08)00009-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

1901年,一种独特的细菌被分离出来作为桑蚕幼虫索托病的病原体,后来在1915年,这种有机体被描述为苏云金芽孢杆菌。自发现以来,这种细菌不仅引起了昆虫病理学家的广泛关注,而且引起了许多其他科学家的关注,他们对与苏云金芽孢杆菌包涵体相关的强效和特异性杀虫活性感兴趣。这导致了最近世界范围内基于苏云金芽孢杆菌的微生物杀虫剂和抗虫转基因植物的发展,以及具有划时代意义的癌症细胞特异性细胞毒素parasporin的发现。本文介绍了基于表面等离子体共振的生物传感器对苏云金芽胞杆菌包涵蛋白与昆虫刷缘膜相互作用的检测研究,以及苏云金芽胞杆菌A1470菌株最新产生的癌细胞杀伤蛋白parasporin-4的鉴定和克隆。用新方法对重组大肠杆菌产生的副孢素-4包涵体进行了溶解和活化,并用阴离子交换色谱法纯化了包涵体。最后对重组副孢蛋白-4进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and characterization of a novel cytotoxic protein, parasporin-4, produced by Bacillus thuringiensis A1470 strain.

In 1901, a unique bacterium was isolated as a pathogen of the sotto disease of the silkmoth larvae, and later in 1915, the organism was described as Bacillus thuringiensis. Since the discovery, this bacterium has widely attracted attention of not only insect pathologists but many other scientists who are interested in strong and specific insecticidal activity associated with inclusion bodies of B. thuringiensis. This has led to the recent worldwide development of B. thuringiensis-based microbial insecticides and insect-resistant transgenic plants, as well as the epoch-making discovery of parasporin, a cancer cell-specific cytotoxin. In the review, we introduce a detection study of interaction between inclusion proteins of B. thuringiensis and brush border membrane of insects using surface plasmon resonance-based biosensor, and then identification and cloning of parasporin-4, a latest cancer cell-killing protein produced by B. thuringiensis A1470 strain. Inclusion bodies of the parasporin-4 produced by recombinant Escherichia coli were solubilized and activated with a new method and purified by an anion-exchange chromatography. At last the characterization of the recombinant parasporin-4 was shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The social network of a cell: recent advances in interactome mapping. Gene expression microarray data analysis demystified. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Ethnomedicines and ethnomedicinal phytophores against herpesviruses. Free radical processes in green tea polyphenols (GTP) investigated by electron paramagnetic resonance (EPR) spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1