{"title":"多年来放射性药物设计的变化。","authors":"William C Eckelman,&nbsp;Torsten Kuwert,&nbsp;Andrea Ciarmiello,&nbsp;Mattia Riondato,&nbsp;Luigi Mansi","doi":"10.23736/S1824-4785.19.03216-3","DOIUrl":null,"url":null,"abstract":"<p><p>Of the many uses of radiopharmaceuticals, developing radiotracers that contribute significantly to diagnosis and therapy of patients has been a major focus. This requires a broad spectrum of expertise including that of the attending physician who lends insight to an unmet clinical need neither addressed by other imaging techniques nor by analysis of tissue, blood, and urine for diagnostics and addressed by pharmaceuticals for therapeutic applications. The design criteria have depended on radiochemistry, on matching the radiopharmaceutical with the imaging devices, and basing the design on current pharmaceuticals. The chelates of technetium-99m were based on radiochemistry rather than clinical need yet are still used today in >70% of the clinical studies. Targeted radiotracers in neurologic and psychiatric disorders, inflammation, cardiovascular disease, and oncology have all been studied with the goal of determining the change in the density of a target protein as a function of disease or treatment or, especially in oncology, detection of the total extent of disease. In the latter approach, PET in university settings leads the way; however, the use of SPECT/CT has increased the specificity of SPECT imaging to complement the cost-effective generator and instant kits already available. Remarkable advances have been achieved in radionuclide therapy using theragnostic agents, with the exclusive domain of oncology. For this application the design of radionuclide therapy follows that used for diagnostics. The increased impact of the discipline depends on the opportunity to continue the search for the most appropriate radiopharmaceutical for each individual patient.</p>","PeriodicalId":23069,"journal":{"name":"The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of...","volume":"66 3","pages":"261-271"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes over the years in radiopharmaceutical design.\",\"authors\":\"William C Eckelman,&nbsp;Torsten Kuwert,&nbsp;Andrea Ciarmiello,&nbsp;Mattia Riondato,&nbsp;Luigi Mansi\",\"doi\":\"10.23736/S1824-4785.19.03216-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Of the many uses of radiopharmaceuticals, developing radiotracers that contribute significantly to diagnosis and therapy of patients has been a major focus. This requires a broad spectrum of expertise including that of the attending physician who lends insight to an unmet clinical need neither addressed by other imaging techniques nor by analysis of tissue, blood, and urine for diagnostics and addressed by pharmaceuticals for therapeutic applications. The design criteria have depended on radiochemistry, on matching the radiopharmaceutical with the imaging devices, and basing the design on current pharmaceuticals. The chelates of technetium-99m were based on radiochemistry rather than clinical need yet are still used today in >70% of the clinical studies. Targeted radiotracers in neurologic and psychiatric disorders, inflammation, cardiovascular disease, and oncology have all been studied with the goal of determining the change in the density of a target protein as a function of disease or treatment or, especially in oncology, detection of the total extent of disease. In the latter approach, PET in university settings leads the way; however, the use of SPECT/CT has increased the specificity of SPECT imaging to complement the cost-effective generator and instant kits already available. Remarkable advances have been achieved in radionuclide therapy using theragnostic agents, with the exclusive domain of oncology. For this application the design of radionuclide therapy follows that used for diagnostics. The increased impact of the discipline depends on the opportunity to continue the search for the most appropriate radiopharmaceutical for each individual patient.</p>\",\"PeriodicalId\":23069,\"journal\":{\"name\":\"The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of...\",\"volume\":\"66 3\",\"pages\":\"261-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23736/S1824-4785.19.03216-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23736/S1824-4785.19.03216-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在放射性药物的许多用途中,开发对患者的诊断和治疗有重大贡献的放射性示踪剂一直是一个主要焦点。这需要广泛的专业知识,包括主治医生的专业知识,他们能够洞察到未被满足的临床需求,这些需求既不能通过其他成像技术解决,也不能通过组织、血液和尿液分析进行诊断,也不能通过药物进行治疗。设计标准依赖于放射化学,放射药物与成像设备的匹配,以及基于当前药物的设计。锝-99m的螯合剂是基于放射化学而不是临床需要,但今天仍在70%以上的临床研究中使用。对神经和精神疾病、炎症、心血管疾病和肿瘤中的靶向放射性示踪剂进行了研究,目的是确定靶蛋白密度的变化作为疾病或治疗的功能,或者特别是在肿瘤学中,检测疾病的总体程度。在后一种方法中,PET在大学环境中处于领先地位;然而,SPECT/CT的使用增加了SPECT成像的特异性,以补充已经可用的具有成本效益的发生器和即时套件。在放射性核素治疗方面取得了显著的进展,使用诊断药物,与肿瘤学的专属领域。对于这种应用,放射性核素治疗的设计遵循用于诊断的设计。该学科的影响力的增加取决于是否有机会继续为每位患者寻找最合适的放射性药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes over the years in radiopharmaceutical design.

Of the many uses of radiopharmaceuticals, developing radiotracers that contribute significantly to diagnosis and therapy of patients has been a major focus. This requires a broad spectrum of expertise including that of the attending physician who lends insight to an unmet clinical need neither addressed by other imaging techniques nor by analysis of tissue, blood, and urine for diagnostics and addressed by pharmaceuticals for therapeutic applications. The design criteria have depended on radiochemistry, on matching the radiopharmaceutical with the imaging devices, and basing the design on current pharmaceuticals. The chelates of technetium-99m were based on radiochemistry rather than clinical need yet are still used today in >70% of the clinical studies. Targeted radiotracers in neurologic and psychiatric disorders, inflammation, cardiovascular disease, and oncology have all been studied with the goal of determining the change in the density of a target protein as a function of disease or treatment or, especially in oncology, detection of the total extent of disease. In the latter approach, PET in university settings leads the way; however, the use of SPECT/CT has increased the specificity of SPECT imaging to complement the cost-effective generator and instant kits already available. Remarkable advances have been achieved in radionuclide therapy using theragnostic agents, with the exclusive domain of oncology. For this application the design of radionuclide therapy follows that used for diagnostics. The increased impact of the discipline depends on the opportunity to continue the search for the most appropriate radiopharmaceutical for each individual patient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toxicity comparison of yttrium-90 resin and glass microspheres radioembolization. Risk factors for rib metastases of lung cancer patients with high-uptake rib foci on 99Tcm-MDP SPECT/CT. Second radioiodine treatment hardly benefits TT-DTC patients with radioiodine-negative metastases on initial post-therapeutic whole-body scans. Total variation regularized expectation maximization reconstruction improves 68Ga-FAPI-04 PET/CT image quality as compared to ordered subset expectation maximization reconstruction. The sentinel node with technetium-99m for prostate cancer. A safe and mature new gold standard?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1