诱导合胞体形成对黏液瘤病毒溶瘤潜能的影响。

IF 6.7 Oncolytic Virotherapy Pub Date : 2019-12-09 eCollection Date: 2019-01-01 DOI:10.2147/OV.S220420
Chase Burton, Mee Y Bartee, Eric Bartee
{"title":"诱导合胞体形成对黏液瘤病毒溶瘤潜能的影响。","authors":"Chase Burton,&nbsp;Mee Y Bartee,&nbsp;Eric Bartee","doi":"10.2147/OV.S220420","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer has become one of the most critical health issues of modern times. To overcome the ineffectiveness of current treatment options, research is being done to explore new therapeutic modalities. One such novel treatment is oncolytic virotherapy (OV) which uses tumor tropic viruses to specifically target and kill malignant cells. While OV has shown significant promise in recent clinical trials, the therapeutic use of viruses poses a number of unique challenges. In particular, obtaining effective viral spread throughout the tumor microenvironment remains problematic. Previous work has suggested this can be overcome by forcing oncolytic viruses to induce syncytia formation.</p><p><strong>Methods: </strong>In the current work, we generated a series of recombinant myxoma viruses expressing exogenous fusion proteins from other viral genomes and examined their therapeutic potential in vitro and in vivo.</p><p><strong>Results: </strong>Similar to previous studies, we observed that the expression of these fusion proteins during myxoma infection induced the formation of multinucleated syncytia which increased viral spread and lytic potential compared to non-fusogenic controls. Contrary to expectations, however, the treatment of established tumors with these viruses resulted in decreased therapeutic efficacy which corresponded with reduced viral persistence.</p><p><strong>Discussion: </strong>These findings indicate that enhanced viral spread caused by syncytia formation can actually reduce the efficacy of OV and supports a number of previous works suggesting that the in vitro properties of viruses frequently fail to predict their in vivo efficacy.</p>","PeriodicalId":19491,"journal":{"name":"Oncolytic Virotherapy","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/OV.S220420","citationCount":"0","resultStr":"{\"title\":\"Impact of Induced Syncytia Formation on the Oncolytic Potential of Myxoma Virus.\",\"authors\":\"Chase Burton,&nbsp;Mee Y Bartee,&nbsp;Eric Bartee\",\"doi\":\"10.2147/OV.S220420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cancer has become one of the most critical health issues of modern times. To overcome the ineffectiveness of current treatment options, research is being done to explore new therapeutic modalities. One such novel treatment is oncolytic virotherapy (OV) which uses tumor tropic viruses to specifically target and kill malignant cells. While OV has shown significant promise in recent clinical trials, the therapeutic use of viruses poses a number of unique challenges. In particular, obtaining effective viral spread throughout the tumor microenvironment remains problematic. Previous work has suggested this can be overcome by forcing oncolytic viruses to induce syncytia formation.</p><p><strong>Methods: </strong>In the current work, we generated a series of recombinant myxoma viruses expressing exogenous fusion proteins from other viral genomes and examined their therapeutic potential in vitro and in vivo.</p><p><strong>Results: </strong>Similar to previous studies, we observed that the expression of these fusion proteins during myxoma infection induced the formation of multinucleated syncytia which increased viral spread and lytic potential compared to non-fusogenic controls. Contrary to expectations, however, the treatment of established tumors with these viruses resulted in decreased therapeutic efficacy which corresponded with reduced viral persistence.</p><p><strong>Discussion: </strong>These findings indicate that enhanced viral spread caused by syncytia formation can actually reduce the efficacy of OV and supports a number of previous works suggesting that the in vitro properties of viruses frequently fail to predict their in vivo efficacy.</p>\",\"PeriodicalId\":19491,\"journal\":{\"name\":\"Oncolytic Virotherapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/OV.S220420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncolytic Virotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/OV.S220420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncolytic Virotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OV.S220420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导读:癌症已经成为现代社会最重要的健康问题之一。为了克服目前治疗方案的无效,正在进行研究以探索新的治疗方式。其中一种新的治疗方法是溶瘤病毒疗法(OV),它使用嗜瘤病毒特异性靶向并杀死恶性细胞。虽然OV在最近的临床试验中显示出巨大的希望,但病毒的治疗用途带来了许多独特的挑战。特别是,在整个肿瘤微环境中获得有效的病毒传播仍然是一个问题。以前的研究表明,这可以通过迫使溶瘤病毒诱导合胞体形成来克服。方法:在本研究中,我们从其他病毒基因组中产生了一系列表达外源融合蛋白的重组黏液瘤病毒,并在体外和体内检测了它们的治疗潜力。结果:与之前的研究类似,我们观察到这些融合蛋白在黏液瘤感染期间的表达诱导了多核合胞体的形成,与非融合性对照相比,多核合胞体的形成增加了病毒的传播和裂解潜力。然而,与预期相反,用这些病毒治疗已建立的肿瘤导致治疗效果下降,这与病毒持久性降低相对应。讨论:这些发现表明,合胞体形成引起的病毒传播增强实际上可以降低OV的功效,并支持了先前的一些研究,即病毒的体外特性经常不能预测其体内功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Induced Syncytia Formation on the Oncolytic Potential of Myxoma Virus.

Introduction: Cancer has become one of the most critical health issues of modern times. To overcome the ineffectiveness of current treatment options, research is being done to explore new therapeutic modalities. One such novel treatment is oncolytic virotherapy (OV) which uses tumor tropic viruses to specifically target and kill malignant cells. While OV has shown significant promise in recent clinical trials, the therapeutic use of viruses poses a number of unique challenges. In particular, obtaining effective viral spread throughout the tumor microenvironment remains problematic. Previous work has suggested this can be overcome by forcing oncolytic viruses to induce syncytia formation.

Methods: In the current work, we generated a series of recombinant myxoma viruses expressing exogenous fusion proteins from other viral genomes and examined their therapeutic potential in vitro and in vivo.

Results: Similar to previous studies, we observed that the expression of these fusion proteins during myxoma infection induced the formation of multinucleated syncytia which increased viral spread and lytic potential compared to non-fusogenic controls. Contrary to expectations, however, the treatment of established tumors with these viruses resulted in decreased therapeutic efficacy which corresponded with reduced viral persistence.

Discussion: These findings indicate that enhanced viral spread caused by syncytia formation can actually reduce the efficacy of OV and supports a number of previous works suggesting that the in vitro properties of viruses frequently fail to predict their in vivo efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Treatment of an Alveolar Rhabdomyosarcoma Allograft with Recombinant Myxoma Virus and Oclacitinib. Virus-Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Impact of Induced Syncytia Formation on the Oncolytic Potential of Myxoma Virus. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1