{"title":"开发用于动态评估坐姿的可穿戴坐姿监测系统。","authors":"Chi-Chih Wu, Chuang-Chien Chiu, Chun-Yu Yeh","doi":"10.1007/s13246-019-00836-4","DOIUrl":null,"url":null,"abstract":"<p><p>There have been increasing cases of people seeking treatment for neck and back pain. The most common cause of neck and back pain is due to long-term poor sitting posture. The most common poor sitting posture cases are humpback, and head and neck being too far forward. It is easy to cause neck and back pain and other symptoms. Therefore, the development of wearable posture monitoring system for dynamic assessment of sitting posture becomes both helpful and necessary. In addition to recording the wearer's posture when sitting with quantitative assessment, it is needed to execute real-time action feedback for correctness of posture, in order to reduce neck and back pain due to long-term poor sitting posture. This study completed an instant recording and dynamic assessment of position measurement and feedback system. The system consists of a number of dynamic measurement units that can describe the posture trajectory, which integrates three-axis gyro meter, three-axis accelerometer, and magnetometer in order to measure the dynamic tracking. In the reliability analysis experiment, angle measurement error is less than 2%. The correlation coefficient between correlation analysis and Motion Analysis (MA) is 0.97. It is shown that the motion trajectory of this system is highly correlated with MA. In the feasibility test of sitting position detection, it is possible to detect the sitting position from the basic action of the walking, standing, sitting and lying down, and the sensitivity reaches 95.84%. In the assessment of the sitting position, the information published by the Canadian Centre for Occupational Health and Safety was used, as well as the recommendations of professional physicians as a basis for evaluating the threshold of the sitting measurement parameters and immediately feedback to the subjects. The system developed in this study can be helpful to reduce neck and back pain due to long-term poor sitting posture.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of wearable posture monitoring system for dynamic assessment of sitting posture.\",\"authors\":\"Chi-Chih Wu, Chuang-Chien Chiu, Chun-Yu Yeh\",\"doi\":\"10.1007/s13246-019-00836-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There have been increasing cases of people seeking treatment for neck and back pain. The most common cause of neck and back pain is due to long-term poor sitting posture. The most common poor sitting posture cases are humpback, and head and neck being too far forward. It is easy to cause neck and back pain and other symptoms. Therefore, the development of wearable posture monitoring system for dynamic assessment of sitting posture becomes both helpful and necessary. In addition to recording the wearer's posture when sitting with quantitative assessment, it is needed to execute real-time action feedback for correctness of posture, in order to reduce neck and back pain due to long-term poor sitting posture. This study completed an instant recording and dynamic assessment of position measurement and feedback system. The system consists of a number of dynamic measurement units that can describe the posture trajectory, which integrates three-axis gyro meter, three-axis accelerometer, and magnetometer in order to measure the dynamic tracking. In the reliability analysis experiment, angle measurement error is less than 2%. The correlation coefficient between correlation analysis and Motion Analysis (MA) is 0.97. It is shown that the motion trajectory of this system is highly correlated with MA. In the feasibility test of sitting position detection, it is possible to detect the sitting position from the basic action of the walking, standing, sitting and lying down, and the sensitivity reaches 95.84%. In the assessment of the sitting position, the information published by the Canadian Centre for Occupational Health and Safety was used, as well as the recommendations of professional physicians as a basis for evaluating the threshold of the sitting measurement parameters and immediately feedback to the subjects. The system developed in this study can be helpful to reduce neck and back pain due to long-term poor sitting posture.</p>\",\"PeriodicalId\":55430,\"journal\":{\"name\":\"Australasian Physical & Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Physical & Engineering Sciences in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-019-00836-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00836-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
越来越多的人因颈部和背部疼痛而寻求治疗。颈背痛最常见的原因是长期坐姿不良。最常见的不良坐姿是驼背、头颈部过于前倾。这很容易引起颈背疼痛等症状。因此,开发用于动态评估坐姿的可穿戴坐姿监测系统变得既有帮助又有必要。除了记录佩戴者的坐姿并进行量化评估外,还需要对坐姿的正确性进行实时动作反馈,以减少因长期不良坐姿导致的颈背疼痛。本研究完成了一个即时记录和动态评估的坐姿测量与反馈系统。该系统由多个可描述姿势轨迹的动态测量单元组成,其中集成了三轴陀螺仪、三轴加速度计和磁力计,以测量动态跟踪。在可靠性分析实验中,角度测量误差小于 2%。相关分析与运动分析(MA)之间的相关系数为 0.97。这表明该系统的运动轨迹与 MA 高度相关。在坐姿检测的可行性测试中,可以从走、站、坐、躺的基本动作中检测出坐姿,灵敏度达到 95.84%。在评估坐姿时,采用了加拿大职业健康与安全中心公布的信息以及专业医生的建议作为依据,评估坐姿测量参数的阈值,并立即反馈给受试者。本研究开发的系统有助于减少因长期不良坐姿而导致的颈部和背部疼痛。
Development of wearable posture monitoring system for dynamic assessment of sitting posture.
There have been increasing cases of people seeking treatment for neck and back pain. The most common cause of neck and back pain is due to long-term poor sitting posture. The most common poor sitting posture cases are humpback, and head and neck being too far forward. It is easy to cause neck and back pain and other symptoms. Therefore, the development of wearable posture monitoring system for dynamic assessment of sitting posture becomes both helpful and necessary. In addition to recording the wearer's posture when sitting with quantitative assessment, it is needed to execute real-time action feedback for correctness of posture, in order to reduce neck and back pain due to long-term poor sitting posture. This study completed an instant recording and dynamic assessment of position measurement and feedback system. The system consists of a number of dynamic measurement units that can describe the posture trajectory, which integrates three-axis gyro meter, three-axis accelerometer, and magnetometer in order to measure the dynamic tracking. In the reliability analysis experiment, angle measurement error is less than 2%. The correlation coefficient between correlation analysis and Motion Analysis (MA) is 0.97. It is shown that the motion trajectory of this system is highly correlated with MA. In the feasibility test of sitting position detection, it is possible to detect the sitting position from the basic action of the walking, standing, sitting and lying down, and the sensitivity reaches 95.84%. In the assessment of the sitting position, the information published by the Canadian Centre for Occupational Health and Safety was used, as well as the recommendations of professional physicians as a basis for evaluating the threshold of the sitting measurement parameters and immediately feedback to the subjects. The system developed in this study can be helpful to reduce neck and back pain due to long-term poor sitting posture.
期刊介绍:
Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to:
- Medical physics in radiotherapy
- Medical physics in diagnostic radiology
- Medical physics in nuclear medicine
- Mathematical modelling applied to medicine and human biology
- Clinical biomedical engineering
- Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals;
- Medical imaging - contributions to new and improved methods;
- Modelling of physiological systems
- Image processing to extract information from images, e.g. fMRI, CT, etc.;
- Biomechanics, especially with applications to orthopaedics.
- Nanotechnology in medicine
APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor.
APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.