{"title":"用果蝇研究复杂的大脑动力学。","authors":"Sophie Aimon, Ilona C Grunwald Kadow","doi":"10.1080/01677063.2019.1706092","DOIUrl":null,"url":null,"abstract":"<p><p>The field has successfully used <i>Drosophila</i> genetic tools to identify neurons and sub-circuits important for specific functions. However, for an organism with complex and changing internal states to succeed in a complex and changing natural environment, many neurons and circuits need to interact dynamically. <i>Drosophila</i>'s many advantages, combined with new imaging tools, offer unique opportunities to study how the brain functions as a complex dynamical system. We give an overview of complex activity patterns and how they can be observed, as well as modeling strategies, adding proof of principle in some cases.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"34 1","pages":"171-177"},"PeriodicalIF":1.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2019.1706092","citationCount":"4","resultStr":"{\"title\":\"Studying complex brain dynamics using <i>Drosophila</i>.\",\"authors\":\"Sophie Aimon, Ilona C Grunwald Kadow\",\"doi\":\"10.1080/01677063.2019.1706092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field has successfully used <i>Drosophila</i> genetic tools to identify neurons and sub-circuits important for specific functions. However, for an organism with complex and changing internal states to succeed in a complex and changing natural environment, many neurons and circuits need to interact dynamically. <i>Drosophila</i>'s many advantages, combined with new imaging tools, offer unique opportunities to study how the brain functions as a complex dynamical system. We give an overview of complex activity patterns and how they can be observed, as well as modeling strategies, adding proof of principle in some cases.</p>\",\"PeriodicalId\":16491,\"journal\":{\"name\":\"Journal of neurogenetics\",\"volume\":\"34 1\",\"pages\":\"171-177\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01677063.2019.1706092\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01677063.2019.1706092\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2019.1706092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The field has successfully used Drosophila genetic tools to identify neurons and sub-circuits important for specific functions. However, for an organism with complex and changing internal states to succeed in a complex and changing natural environment, many neurons and circuits need to interact dynamically. Drosophila's many advantages, combined with new imaging tools, offer unique opportunities to study how the brain functions as a complex dynamical system. We give an overview of complex activity patterns and how they can be observed, as well as modeling strategies, adding proof of principle in some cases.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms