将目前的生物医学疗法转化为长时间的深空任务。

IF 5.1 4区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Precision Clinical Medicine Pub Date : 2019-12-01 Epub Date: 2019-11-15 DOI:10.1093/pcmedi/pbz022
Sonia Iosim, Matthew MacKay, Craig Westover, Christopher E Mason
{"title":"将目前的生物医学疗法转化为长时间的深空任务。","authors":"Sonia Iosim,&nbsp;Matthew MacKay,&nbsp;Craig Westover,&nbsp;Christopher E Mason","doi":"10.1093/pcmedi/pbz022","DOIUrl":null,"url":null,"abstract":"<p><p>It is been shown that spaceflight-induced molecular, cellular, and physiologic changes cause alterations across many modalities of the human body, including cardiovascular, musculoskeletal, hematological, immunological, ocular, and neurological systems. The Twin Study, a multi-year, multi-omic study of human response to spaceflight, provided detailed and comprehensive molecular and cellular maps of the human response to radiation, microgravity, isolation, and stress. These rich data identified epigenetic, gene expression, inflammatory, and metabolic responses to spaceflight, facilitating a better biomedical roadmap of features that should be monitored and safe-guarded in upcoming missions. Further, by exploring new developments in pre-clinical models and clinical trials, we can begin to design potential cellular interventions for exploration-class missions to Mars and potentially farther. This paper will discuss the overall risks astronauts face during spaceflight, what is currently known about human response to these risks, what pharmaceutical interventions exist for use in space, and which tools of precision medicine and cellular engineering could be applied to aerospace and astronaut medicine.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"2 4","pages":"259-269"},"PeriodicalIF":5.1000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/pcmedi/pbz022","citationCount":"22","resultStr":"{\"title\":\"Translating current biomedical therapies for long duration, deep space missions.\",\"authors\":\"Sonia Iosim,&nbsp;Matthew MacKay,&nbsp;Craig Westover,&nbsp;Christopher E Mason\",\"doi\":\"10.1093/pcmedi/pbz022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is been shown that spaceflight-induced molecular, cellular, and physiologic changes cause alterations across many modalities of the human body, including cardiovascular, musculoskeletal, hematological, immunological, ocular, and neurological systems. The Twin Study, a multi-year, multi-omic study of human response to spaceflight, provided detailed and comprehensive molecular and cellular maps of the human response to radiation, microgravity, isolation, and stress. These rich data identified epigenetic, gene expression, inflammatory, and metabolic responses to spaceflight, facilitating a better biomedical roadmap of features that should be monitored and safe-guarded in upcoming missions. Further, by exploring new developments in pre-clinical models and clinical trials, we can begin to design potential cellular interventions for exploration-class missions to Mars and potentially farther. This paper will discuss the overall risks astronauts face during spaceflight, what is currently known about human response to these risks, what pharmaceutical interventions exist for use in space, and which tools of precision medicine and cellular engineering could be applied to aerospace and astronaut medicine.</p>\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":\"2 4\",\"pages\":\"259-269\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/pcmedi/pbz022\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbz022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbz022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 22

摘要

研究表明,太空飞行引起的分子、细胞和生理变化会引起人体许多形态的改变,包括心血管、肌肉骨骼、血液、免疫、眼和神经系统。孪生研究是一项关于人类对航天反应的多年多组学研究,提供了人类对辐射、微重力、隔离和压力反应的详细和全面的分子和细胞图。这些丰富的数据确定了对太空飞行的表观遗传、基因表达、炎症和代谢反应,促进了更好的生物医学路线图,这些特征应该在即将到来的任务中进行监测和保护。此外,通过探索临床前模型和临床试验的新进展,我们可以开始设计潜在的细胞干预措施,用于火星和更远的探索级任务。本文将讨论宇航员在航天飞行期间面临的总体风险,目前已知的人类对这些风险的反应,在太空中存在哪些药物干预措施,以及哪些精确医学和细胞工程工具可以应用于航空航天和宇航员医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Translating current biomedical therapies for long duration, deep space missions.

It is been shown that spaceflight-induced molecular, cellular, and physiologic changes cause alterations across many modalities of the human body, including cardiovascular, musculoskeletal, hematological, immunological, ocular, and neurological systems. The Twin Study, a multi-year, multi-omic study of human response to spaceflight, provided detailed and comprehensive molecular and cellular maps of the human response to radiation, microgravity, isolation, and stress. These rich data identified epigenetic, gene expression, inflammatory, and metabolic responses to spaceflight, facilitating a better biomedical roadmap of features that should be monitored and safe-guarded in upcoming missions. Further, by exploring new developments in pre-clinical models and clinical trials, we can begin to design potential cellular interventions for exploration-class missions to Mars and potentially farther. This paper will discuss the overall risks astronauts face during spaceflight, what is currently known about human response to these risks, what pharmaceutical interventions exist for use in space, and which tools of precision medicine and cellular engineering could be applied to aerospace and astronaut medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Clinical Medicine
Precision Clinical Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
10.80
自引率
0.00%
发文量
26
审稿时长
5 weeks
期刊介绍: Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.
期刊最新文献
Global distribution of Klebsiella pneumoniae producing extended-spectrum β-lactamases in neonates. Application of metagenomic next-generation sequencing with brain tissue biopsy for diagnosing intracranial lesions in people with HIV. Revisiting ecological fallacy: are single-case experimental study designs even more relevant in the era of precision medicine? Targeted nuclear degranulation of neutrophils promotes the progression of pneumonia in ulcerative colitis. The relationship between contact lens ultraviolet light transmittance and myopia progression: a large-scale retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1