Yongqun He, Haihe Wang, Jie Zheng, Daniel P Beiting, Anna Maria Masci, Hong Yu, Kaiyong Liu, Jianmin Wu, Jeffrey L Curtis, Barry Smith, Alexander V Alekseyenko, Jihad S Obeid
{"title":"OHMI:宿主-微生物组相互作用本体。","authors":"Yongqun He, Haihe Wang, Jie Zheng, Daniel P Beiting, Anna Maria Masci, Hong Yu, Kaiyong Liu, Jianmin Wu, Jeffrey L Curtis, Barry Smith, Alexander V Alekseyenko, Jihad S Obeid","doi":"10.1186/s13326-019-0217-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery.</p><p><strong>Methods: </strong>Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results.</p><p><strong>Results: </strong>Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. Our ontological study identified new high-level microbiota taxonomical structures. Two microbiome-related competency questions were also designed and addressed. We were also able to use OHMI to represent statistically significant results identified from a large existing microbiome database data analysis.</p><p><strong>Conclusion: </strong>OHMI represents entities and relations in the domain of HMIs. It supports shared knowledge representation, data and metadata standardization and integration, and can be used in formulation of advanced queries for purposes of data analysis.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"10 1","pages":"25"},"PeriodicalIF":1.6000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937947/pdf/","citationCount":"0","resultStr":"{\"title\":\"OHMI: the ontology of host-microbiome interactions.\",\"authors\":\"Yongqun He, Haihe Wang, Jie Zheng, Daniel P Beiting, Anna Maria Masci, Hong Yu, Kaiyong Liu, Jianmin Wu, Jeffrey L Curtis, Barry Smith, Alexander V Alekseyenko, Jihad S Obeid\",\"doi\":\"10.1186/s13326-019-0217-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery.</p><p><strong>Methods: </strong>Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results.</p><p><strong>Results: </strong>Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. Our ontological study identified new high-level microbiota taxonomical structures. Two microbiome-related competency questions were also designed and addressed. We were also able to use OHMI to represent statistically significant results identified from a large existing microbiome database data analysis.</p><p><strong>Conclusion: </strong>OHMI represents entities and relations in the domain of HMIs. It supports shared knowledge representation, data and metadata standardization and integration, and can be used in formulation of advanced queries for purposes of data analysis.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"10 1\",\"pages\":\"25\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-019-0217-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-019-0217-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
OHMI: the ontology of host-microbiome interactions.
Background: Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery.
Methods: Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results.
Results: Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. Our ontological study identified new high-level microbiota taxonomical structures. Two microbiome-related competency questions were also designed and addressed. We were also able to use OHMI to represent statistically significant results identified from a large existing microbiome database data analysis.
Conclusion: OHMI represents entities and relations in the domain of HMIs. It supports shared knowledge representation, data and metadata standardization and integration, and can be used in formulation of advanced queries for purposes of data analysis.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.