利用初级运动皮层的局部场电位进行力解码:PLS还是卡尔曼滤波回归?

Q3 Biochemistry, Genetics and Molecular Biology Australasian Physical & Engineering Sciences in Medicine Pub Date : 2020-01-02 DOI:10.1007/s13246-019-00833-7
Nargess Heydari Beni, Reza Foodeh, Vahid Shalchyan, Mohammad Reza Daliri
{"title":"利用初级运动皮层的局部场电位进行力解码:PLS还是卡尔曼滤波回归?","authors":"Nargess Heydari Beni, Reza Foodeh, Vahid Shalchyan, Mohammad Reza Daliri","doi":"10.1007/s13246-019-00833-7","DOIUrl":null,"url":null,"abstract":"<p><p>The development of brain-computer interface (BCI) systems is an important approach in brain studies. Control of communication devices and prostheses in real-world scenarios requires complex movement parameters. Decoding a variety of neural signals captured by micro-wire arrays is a potential applicant for extracting movement-related information. The present work was conducted to compare the functionality of partial least square (PLS) regression and Kalman filter to predict the force parameter from local field potential (LFP) signals of the primary motor cortex (M1). The signals were recorded using a 16-channel micro-wire array from the forelimb-related area of the M1 of three rats performing a behavioral task in which the force signal of the rat's forelimb paw was generated. Our results show that PLS regression and Kalman filters with the mean performance of 0.75 and 0.72 in terms of the correlation coefficient (CC) and 0.37 and 0.48 in terms of normalized mean square error (NMSE), respectively, are effective methods for decoding the force parameter from LFPs. Kalman filter underperforms PLS both in performance and speed. Although adding nonlinearity to the Kalman filter results in equally accurate CC performance as PLS, it has even more computational cost. Therefore, it is inferred that nonlinear methods do not necessarily have better functionality than linear ones and PLS, as a simple fast linear method could be an effectively applicable regression technique for BCIs.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Force decoding using local field potentials in primary motor cortex: PLS or Kalman filter regression?\",\"authors\":\"Nargess Heydari Beni, Reza Foodeh, Vahid Shalchyan, Mohammad Reza Daliri\",\"doi\":\"10.1007/s13246-019-00833-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of brain-computer interface (BCI) systems is an important approach in brain studies. Control of communication devices and prostheses in real-world scenarios requires complex movement parameters. Decoding a variety of neural signals captured by micro-wire arrays is a potential applicant for extracting movement-related information. The present work was conducted to compare the functionality of partial least square (PLS) regression and Kalman filter to predict the force parameter from local field potential (LFP) signals of the primary motor cortex (M1). The signals were recorded using a 16-channel micro-wire array from the forelimb-related area of the M1 of three rats performing a behavioral task in which the force signal of the rat's forelimb paw was generated. Our results show that PLS regression and Kalman filters with the mean performance of 0.75 and 0.72 in terms of the correlation coefficient (CC) and 0.37 and 0.48 in terms of normalized mean square error (NMSE), respectively, are effective methods for decoding the force parameter from LFPs. Kalman filter underperforms PLS both in performance and speed. Although adding nonlinearity to the Kalman filter results in equally accurate CC performance as PLS, it has even more computational cost. Therefore, it is inferred that nonlinear methods do not necessarily have better functionality than linear ones and PLS, as a simple fast linear method could be an effectively applicable regression technique for BCIs.</p>\",\"PeriodicalId\":55430,\"journal\":{\"name\":\"Australasian Physical & Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Physical & Engineering Sciences in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-019-00833-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-019-00833-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

开发脑机接口(BCI)系统是脑科学研究的一个重要方法。在现实世界中,控制通信设备和假肢需要复杂的运动参数。对微线阵列捕捉到的各种神经信号进行解码是提取运动相关信息的潜在应用领域。本研究比较了偏最小二乘法(PLS)回归和卡尔曼滤波器从初级运动皮层(M1)局部场电位(LFP)信号预测力参数的功能。我们使用 16 通道微线阵列记录了三只大鼠 M1 前肢相关区域的信号,这些大鼠在执行行为任务时会产生前肢爪子的力信号。我们的研究结果表明,PLS 回归和卡尔曼滤波器的相关系数(CC)平均值分别为 0.75 和 0.72,归一化均方误差(NMSE)分别为 0.37 和 0.48,它们都是解码 LFP 的力参数的有效方法。卡尔曼滤波器在性能和速度上都不如 PLS。虽然在卡尔曼滤波器中加入非线性可获得与 PLS 同样精确的 CC 性能,但其计算成本更高。因此,可以推断非线性方法并不一定比线性方法和 PLS 具有更好的功能,因为简单快速的线性方法可以有效地应用于 BCI 的回归技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Force decoding using local field potentials in primary motor cortex: PLS or Kalman filter regression?

The development of brain-computer interface (BCI) systems is an important approach in brain studies. Control of communication devices and prostheses in real-world scenarios requires complex movement parameters. Decoding a variety of neural signals captured by micro-wire arrays is a potential applicant for extracting movement-related information. The present work was conducted to compare the functionality of partial least square (PLS) regression and Kalman filter to predict the force parameter from local field potential (LFP) signals of the primary motor cortex (M1). The signals were recorded using a 16-channel micro-wire array from the forelimb-related area of the M1 of three rats performing a behavioral task in which the force signal of the rat's forelimb paw was generated. Our results show that PLS regression and Kalman filters with the mean performance of 0.75 and 0.72 in terms of the correlation coefficient (CC) and 0.37 and 0.48 in terms of normalized mean square error (NMSE), respectively, are effective methods for decoding the force parameter from LFPs. Kalman filter underperforms PLS both in performance and speed. Although adding nonlinearity to the Kalman filter results in equally accurate CC performance as PLS, it has even more computational cost. Therefore, it is inferred that nonlinear methods do not necessarily have better functionality than linear ones and PLS, as a simple fast linear method could be an effectively applicable regression technique for BCIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to: - Medical physics in radiotherapy - Medical physics in diagnostic radiology - Medical physics in nuclear medicine - Mathematical modelling applied to medicine and human biology - Clinical biomedical engineering - Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals; - Medical imaging - contributions to new and improved methods; - Modelling of physiological systems - Image processing to extract information from images, e.g. fMRI, CT, etc.; - Biomechanics, especially with applications to orthopaedics. - Nanotechnology in medicine APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor. APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.
期刊最新文献
Acknowledgment of Reviewers for Volume 35 Acknowledgment of Reviewers for Volume 34 A comparison between EPSON V700 and EPSON V800 scanners for film dosimetry. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. EPSM 2019, Engineering and Physical Sciences in Medicine : 28-30 October 2019, Perth, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1