刚跨过弹性边界的绒毛细胞运动极性的分层发展

IF 2 4区 生物学 Q4 CELL BIOLOGY Cell structure and function Pub Date : 2020-02-22 Epub Date: 2019-12-27 DOI:10.1247/csf.19040
Thasaneeya Kuboki, Hiroyuki Ebata, Tomoki Matsuda, Yoshiyuki Arai, Takeharu Nagai, Satoru Kidoaki
{"title":"刚跨过弹性边界的绒毛细胞运动极性的分层发展","authors":"Thasaneeya Kuboki, Hiroyuki Ebata, Tomoki Matsuda, Yoshiyuki Arai, Takeharu Nagai, Satoru Kidoaki","doi":"10.1247/csf.19040","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"33-43"},"PeriodicalIF":2.0000,"publicationDate":"2020-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739161/pdf/","citationCount":"4","resultStr":"{\"title\":\"Hierarchical Development of Motile Polarity in Durotactic Cells Just Crossing an Elasticity Boundary.\",\"authors\":\"Thasaneeya Kuboki, Hiroyuki Ebata, Tomoki Matsuda, Yoshiyuki Arai, Takeharu Nagai, Satoru Kidoaki\",\"doi\":\"10.1247/csf.19040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin.</p>\",\"PeriodicalId\":9927,\"journal\":{\"name\":\"Cell structure and function\",\"volume\":\"45 1\",\"pages\":\"33-43\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739161/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell structure and function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.19040\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.19040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

在机械生物学领域,人们对细胞杜罗他西斯进行了广泛的研究。从原理上讲,刚度梯度的不对称机械场会在细胞中产生运动极性,而运动极性正是杜氏运动的驱动因素。然而,杜氏运动极性的实际形成过程仍不清楚。在本研究中,为了明确杜罗氏极性发展的动力学细节,我们研究了在微弹性图案凝胶上制备的表达维纳斯-大蒜素的成纤维细胞刚刚穿过弹性边界时,细胞塑形和病灶粘附(FA)的微观周转的动力学。基于持续随机变形模型的细胞塑形傅立叶模式分析显示,运动细胞的前缘穿过从软区到硬区的边界后的最初几个小时内,细胞体尺度上的运动极性就已经建立。光漂白后荧光恢复(FRAP)分析表明,在细胞进入僵硬区后的几十分钟内,细胞前部FA处的paxillin移动分数呈现不对称增加。结果表明,杜洛克细胞的运动极性是通过FAs活性和细胞塑形动力学中不同类型的不对称的分层分步发展建立起来的,其时间滞后数小时:微弹性图案凝胶 杜罗他氏病 细胞极性 局灶粘附 paxillin
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Development of Motile Polarity in Durotactic Cells Just Crossing an Elasticity Boundary.

Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell structure and function
Cell structure and function 生物-细胞生物学
CiteScore
2.50
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print. Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.
期刊最新文献
A sensitive ERK fluorescent probe reveals the significance of minimal EGF-induced transcription. Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish. The Role of Primary Cilia in Myoblast Proliferation and Cell Cycle Regulation during Myogenesis. Impact of physiological ionic strength and crowding on kinesin-1 motility. Live imaging of paracrine signaling: Advances in visualization and tracking techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1