Nico Eisenhauer, Holger Schielzeth, Andrew D Barnes, Kathryn Barry, Aletta Bonn, Ulrich Brose, Helge Bruelheide, Nina Buchmann, François Buscot, Anne Ebeling, Olga Ferlian, Grégoire T Freschet, Darren P Giling, Stephan Hättenschwiler, Helmut Hillebrand, Jes Hines, Forest Isbell, Eva Koller-France, Birgitta König-Ries, Hans de Kroon, Sebastian T Meyer, Alexandru Milcu, Jörg Müller, Charles A Nock, Jana S Petermann, Christiane Roscher, Christoph Scherber, Michael Scherer-Lorenzen, Bernhard Schmid, Stefan A Schnitzer, Andreas Schuldt, Teja Tscharntke, Manfred Türke, Nicole M van Dam, Fons van der Plas, Anja Vogel, Cameron Wagg, David A Wardle, Alexandra Weigelt, Wolfgang W Weisser, Christian Wirth, Malte Jochum
{"title":"生物多样性生态系统功能研究的多营养视角。","authors":"Nico Eisenhauer, Holger Schielzeth, Andrew D Barnes, Kathryn Barry, Aletta Bonn, Ulrich Brose, Helge Bruelheide, Nina Buchmann, François Buscot, Anne Ebeling, Olga Ferlian, Grégoire T Freschet, Darren P Giling, Stephan Hättenschwiler, Helmut Hillebrand, Jes Hines, Forest Isbell, Eva Koller-France, Birgitta König-Ries, Hans de Kroon, Sebastian T Meyer, Alexandru Milcu, Jörg Müller, Charles A Nock, Jana S Petermann, Christiane Roscher, Christoph Scherber, Michael Scherer-Lorenzen, Bernhard Schmid, Stefan A Schnitzer, Andreas Schuldt, Teja Tscharntke, Manfred Türke, Nicole M van Dam, Fons van der Plas, Anja Vogel, Cameron Wagg, David A Wardle, Alexandra Weigelt, Wolfgang W Weisser, Christian Wirth, Malte Jochum","doi":"10.1016/bs.aecr.2019.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.</p>","PeriodicalId":50868,"journal":{"name":"Advances in Ecological Research","volume":"61 ","pages":"1-54"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.aecr.2019.06.001","citationCount":"74","resultStr":"{\"title\":\"A multitrophic perspective on biodiversity-ecosystem functioning research.\",\"authors\":\"Nico Eisenhauer, Holger Schielzeth, Andrew D Barnes, Kathryn Barry, Aletta Bonn, Ulrich Brose, Helge Bruelheide, Nina Buchmann, François Buscot, Anne Ebeling, Olga Ferlian, Grégoire T Freschet, Darren P Giling, Stephan Hättenschwiler, Helmut Hillebrand, Jes Hines, Forest Isbell, Eva Koller-France, Birgitta König-Ries, Hans de Kroon, Sebastian T Meyer, Alexandru Milcu, Jörg Müller, Charles A Nock, Jana S Petermann, Christiane Roscher, Christoph Scherber, Michael Scherer-Lorenzen, Bernhard Schmid, Stefan A Schnitzer, Andreas Schuldt, Teja Tscharntke, Manfred Türke, Nicole M van Dam, Fons van der Plas, Anja Vogel, Cameron Wagg, David A Wardle, Alexandra Weigelt, Wolfgang W Weisser, Christian Wirth, Malte Jochum\",\"doi\":\"10.1016/bs.aecr.2019.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.</p>\",\"PeriodicalId\":50868,\"journal\":{\"name\":\"Advances in Ecological Research\",\"volume\":\"61 \",\"pages\":\"1-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.aecr.2019.06.001\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Ecological Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aecr.2019.06.001\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Ecological Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/bs.aecr.2019.06.001","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A multitrophic perspective on biodiversity-ecosystem functioning research.
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
期刊介绍:
Advances in Ecological Research is one of the most successful series in the highly competitive field of ecology. Each volume publishes topical and important reviews, interpreting ecology as widely as in the past, to include all material that contributes to our understanding of the field. Topics in this invaluable series include the physiology, populations, and communities of plants and animals, as well as landscape and ecosystem ecology.