基于联合AP/LAT视图的器官定位地标一致性检测和分层活动外观模型。

Qi Song, Albert Montillo, Roshni Bhagalia, V Srikrishnan
{"title":"基于联合AP/LAT视图的器官定位地标一致性检测和分层活动外观模型。","authors":"Qi Song,&nbsp;Albert Montillo,&nbsp;Roshni Bhagalia,&nbsp;V Srikrishnan","doi":"10.1007/978-3-319-05530-5_14","DOIUrl":null,"url":null,"abstract":"<p><p>Parsing 2D radiographs into anatomical regions is a challenging task with many applications. In the clinic, scans routinely include anterior-posterior (AP) and lateral (LAT) view radiographs. Since these orthogonal views provide complementary anatomic information, an integrated analysis can afford the greatest localization accuracy. To solve this integration we propose automatic landmark candidate detection, pruned by a learned geometric consensus detector model and refined by fitting a hierarchical active appearance organ model (H-AAM). Our main contribution is twofold. First, we propose a probabilistic joint consensus detection model which learns how landmarks in <i>either or both</i> views predict landmark locations in a given view. Second, we refine landmarks by fitting a joint H-AAM that learns how landmark arrangement and image appearance can help predict across views. This increases accuracy and robustness to anatomic variation. All steps require just seconds to compute and compared to processing the scouts separately, joint processing reduces mean landmark distance error from 27.3 mm to 15.7 mm in LAT view and from 12.7 mm to 11.2 mm in the AP view. The errors are comparable to human expert inter-observer variability and suitable for clinical applications such as personalized scan planning for dose reduction. We assess our method using a database of scout CT scans from 93 subjects with widely varying pathology.</p>","PeriodicalId":92822,"journal":{"name":"Medical computer vision : large data in medical imaging : third international MICCAI workshop, MCV 2013, Nagoya, Japan, September 26, 2013 : revised selected papers. MCV (Workshop) (3rd : 2013 : Nagoya-shi, Japan)","volume":"8331 ","pages":"138-147"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947663/pdf/nihms-1063776.pdf","citationCount":"5","resultStr":"{\"title\":\"Organ Localization Using Joint AP/LAT View Landmark Consensus Detection and Hierarchical Active Appearance Models.\",\"authors\":\"Qi Song,&nbsp;Albert Montillo,&nbsp;Roshni Bhagalia,&nbsp;V Srikrishnan\",\"doi\":\"10.1007/978-3-319-05530-5_14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parsing 2D radiographs into anatomical regions is a challenging task with many applications. In the clinic, scans routinely include anterior-posterior (AP) and lateral (LAT) view radiographs. Since these orthogonal views provide complementary anatomic information, an integrated analysis can afford the greatest localization accuracy. To solve this integration we propose automatic landmark candidate detection, pruned by a learned geometric consensus detector model and refined by fitting a hierarchical active appearance organ model (H-AAM). Our main contribution is twofold. First, we propose a probabilistic joint consensus detection model which learns how landmarks in <i>either or both</i> views predict landmark locations in a given view. Second, we refine landmarks by fitting a joint H-AAM that learns how landmark arrangement and image appearance can help predict across views. This increases accuracy and robustness to anatomic variation. All steps require just seconds to compute and compared to processing the scouts separately, joint processing reduces mean landmark distance error from 27.3 mm to 15.7 mm in LAT view and from 12.7 mm to 11.2 mm in the AP view. The errors are comparable to human expert inter-observer variability and suitable for clinical applications such as personalized scan planning for dose reduction. We assess our method using a database of scout CT scans from 93 subjects with widely varying pathology.</p>\",\"PeriodicalId\":92822,\"journal\":{\"name\":\"Medical computer vision : large data in medical imaging : third international MICCAI workshop, MCV 2013, Nagoya, Japan, September 26, 2013 : revised selected papers. MCV (Workshop) (3rd : 2013 : Nagoya-shi, Japan)\",\"volume\":\"8331 \",\"pages\":\"138-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947663/pdf/nihms-1063776.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical computer vision : large data in medical imaging : third international MICCAI workshop, MCV 2013, Nagoya, Japan, September 26, 2013 : revised selected papers. MCV (Workshop) (3rd : 2013 : Nagoya-shi, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-05530-5_14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical computer vision : large data in medical imaging : third international MICCAI workshop, MCV 2013, Nagoya, Japan, September 26, 2013 : revised selected papers. MCV (Workshop) (3rd : 2013 : Nagoya-shi, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-05530-5_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在许多应用中,将二维x线照片解析为解剖区域是一项具有挑战性的任务。在临床上,常规扫描包括前后位(AP)和侧位(LAT) x线片。由于这些正交视图提供了互补的解剖信息,因此综合分析可以提供最大的定位精度。为了解决这种集成问题,我们提出了自动地标候选检测,通过学习几何一致性检测器模型进行修剪,并通过拟合分层活动外观器官模型(H-AAM)进行细化。我们的主要贡献是双重的。首先,我们提出了一个概率联合共识检测模型,该模型学习任一视图或两个视图中的地标如何预测给定视图中的地标位置。其次,我们通过拟合一个联合H-AAM来细化地标,该联合H-AAM学习地标的排列和图像外观如何帮助预测跨视图。这增加了对解剖变异的准确性和稳健性。所有步骤只需要几秒钟的计算时间,与单独处理侦察器相比,联合处理将LAT视图中的平均地标距离误差从27.3 mm减少到15.7 mm, AP视图中的平均地标距离误差从12.7 mm减少到11.2 mm。误差与人类专家之间的观察者可变性相当,适合临床应用,如个性化的剂量减少扫描计划。我们使用来自93名具有广泛不同病理的受试者的童子军CT扫描数据库来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organ Localization Using Joint AP/LAT View Landmark Consensus Detection and Hierarchical Active Appearance Models.

Parsing 2D radiographs into anatomical regions is a challenging task with many applications. In the clinic, scans routinely include anterior-posterior (AP) and lateral (LAT) view radiographs. Since these orthogonal views provide complementary anatomic information, an integrated analysis can afford the greatest localization accuracy. To solve this integration we propose automatic landmark candidate detection, pruned by a learned geometric consensus detector model and refined by fitting a hierarchical active appearance organ model (H-AAM). Our main contribution is twofold. First, we propose a probabilistic joint consensus detection model which learns how landmarks in either or both views predict landmark locations in a given view. Second, we refine landmarks by fitting a joint H-AAM that learns how landmark arrangement and image appearance can help predict across views. This increases accuracy and robustness to anatomic variation. All steps require just seconds to compute and compared to processing the scouts separately, joint processing reduces mean landmark distance error from 27.3 mm to 15.7 mm in LAT view and from 12.7 mm to 11.2 mm in the AP view. The errors are comparable to human expert inter-observer variability and suitable for clinical applications such as personalized scan planning for dose reduction. We assess our method using a database of scout CT scans from 93 subjects with widely varying pathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Segmentation and Registration for Infant Brain Images Classifier-Based Multi-atlas Label Propagation with Test-Specific Atlas Weighting for Correspondence-Free Scenarios Automatic 3D Multiorgan Segmentation via Clustering and Graph Cut Using Spatial Relations and Hierarchically-Registered Atlases Pectoralis Muscle Segmentation on CT Images Based on Bayesian Graph Cuts with a Subject-Tailored Atlas CT Prostate Deformable Segmentation by Boundary Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1