{"title":"果蝇的功能连接体研究。","authors":"Katrin Vogt","doi":"10.1080/01677063.2020.1712598","DOIUrl":null,"url":null,"abstract":"<p><p>The full functionality of the brain is determined by its molecular, cellular and circuit structure. Modern neuroscience now prioritizes the mapping of whole brain connectomes by detecting all direct neuron to neuron synaptic connections, a feat first accomplished for <i>C. elegans</i>, a full reconstruction of a 302-neuron nervous system. Efforts at Janelia Research Campus will soon reconstruct the whole brain connectomes of a larval and an adult <i>Drosophila.</i> These connectomes will provide a framework for incorporating detailed neural circuit information that <i>Drosophila</i> neuroscientists have gathered over decades. But when viewed in the context of a whole brain, it becomes difficult to isolate the contributions of distinct circuits, whether sensory systems or higher brain regions. The complete wiring diagram tells us that sensory information is not only processed in separate channels, but that even the earliest sensory layers are strongly synaptically interconnected. In the higher brain, long-range projections densely interconnect major brain regions and convergence centers that integrate input from different sensory systems. Furthermore, we also need to understand the impact of neuronal communication beyond direct synaptic modulation. Nevertheless, all of this can be pursued with <i>Drosophila</i>, combining connectomics with a diverse array of genetic tools and behavioral paradigms that provide effective approaches to entire brain function.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"34 1","pages":"156-161"},"PeriodicalIF":1.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2020.1712598","citationCount":"4","resultStr":"{\"title\":\"Towards a functional connectome in <i>Drosophila</i>.\",\"authors\":\"Katrin Vogt\",\"doi\":\"10.1080/01677063.2020.1712598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The full functionality of the brain is determined by its molecular, cellular and circuit structure. Modern neuroscience now prioritizes the mapping of whole brain connectomes by detecting all direct neuron to neuron synaptic connections, a feat first accomplished for <i>C. elegans</i>, a full reconstruction of a 302-neuron nervous system. Efforts at Janelia Research Campus will soon reconstruct the whole brain connectomes of a larval and an adult <i>Drosophila.</i> These connectomes will provide a framework for incorporating detailed neural circuit information that <i>Drosophila</i> neuroscientists have gathered over decades. But when viewed in the context of a whole brain, it becomes difficult to isolate the contributions of distinct circuits, whether sensory systems or higher brain regions. The complete wiring diagram tells us that sensory information is not only processed in separate channels, but that even the earliest sensory layers are strongly synaptically interconnected. In the higher brain, long-range projections densely interconnect major brain regions and convergence centers that integrate input from different sensory systems. Furthermore, we also need to understand the impact of neuronal communication beyond direct synaptic modulation. Nevertheless, all of this can be pursued with <i>Drosophila</i>, combining connectomics with a diverse array of genetic tools and behavioral paradigms that provide effective approaches to entire brain function.</p>\",\"PeriodicalId\":16491,\"journal\":{\"name\":\"Journal of neurogenetics\",\"volume\":\"34 1\",\"pages\":\"156-161\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01677063.2020.1712598\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01677063.2020.1712598\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2020.1712598","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The full functionality of the brain is determined by its molecular, cellular and circuit structure. Modern neuroscience now prioritizes the mapping of whole brain connectomes by detecting all direct neuron to neuron synaptic connections, a feat first accomplished for C. elegans, a full reconstruction of a 302-neuron nervous system. Efforts at Janelia Research Campus will soon reconstruct the whole brain connectomes of a larval and an adult Drosophila. These connectomes will provide a framework for incorporating detailed neural circuit information that Drosophila neuroscientists have gathered over decades. But when viewed in the context of a whole brain, it becomes difficult to isolate the contributions of distinct circuits, whether sensory systems or higher brain regions. The complete wiring diagram tells us that sensory information is not only processed in separate channels, but that even the earliest sensory layers are strongly synaptically interconnected. In the higher brain, long-range projections densely interconnect major brain regions and convergence centers that integrate input from different sensory systems. Furthermore, we also need to understand the impact of neuronal communication beyond direct synaptic modulation. Nevertheless, all of this can be pursued with Drosophila, combining connectomics with a diverse array of genetic tools and behavioral paradigms that provide effective approaches to entire brain function.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms