低温保存淋巴母细胞样细胞系的高效诱导多能干细胞重编程。

Journal of biological methods Pub Date : 2020-01-08 eCollection Date: 2020-01-01 DOI:10.14440/jbm.2020.296
Satish Kumar, Joanne E Curran, Erika C Espinosa, David C Glahn, John Blangero
{"title":"低温保存淋巴母细胞样细胞系的高效诱导多能干细胞重编程。","authors":"Satish Kumar,&nbsp;Joanne E Curran,&nbsp;Erika C Espinosa,&nbsp;David C Glahn,&nbsp;John Blangero","doi":"10.14440/jbm.2020.296","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue culture based <i>in-vitro</i> experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and thus unlimited source of pluripotent cells for targeted differentiation into functionally relevant disease specific tissue/cell types. The existing rich bio-resource of Epstein-Barr virus (EBV) immortalized lymphoblastoid cell line (LCL) repositories generated from a wide array of patients in genetic and epidemiological studies worldwide, many of them with extensive genotypic, genomic and phenotypic data already existing, provides a great opportunity to reprogram iPSCs from any of these LCL donors in the context of their own genetic identity for disease modeling and disease gene identification. However, due to the low reprogramming efficiency and poor success rate of LCL to iPSC reprogramming, these LCL resources remain severely underused for this purpose. Here, we detailed step-by-step instructions to perform our highly efficient LCL-to-iPSC reprogramming protocol using EBNA1/OriP episomal plasmids encoding pluripotency transcription factors (<i>i.e.</i>, OCT3/4, SOX2, KLF4, L-MYC, and LIN28), mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate (> 200 reprogrammed iPSC lines) using this protocol.</p>","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"7 1","pages":"e124"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/93/jbm-7-1-e124.PMC6974695.pdf","citationCount":"8","resultStr":"{\"title\":\"Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines.\",\"authors\":\"Satish Kumar,&nbsp;Joanne E Curran,&nbsp;Erika C Espinosa,&nbsp;David C Glahn,&nbsp;John Blangero\",\"doi\":\"10.14440/jbm.2020.296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue culture based <i>in-vitro</i> experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and thus unlimited source of pluripotent cells for targeted differentiation into functionally relevant disease specific tissue/cell types. The existing rich bio-resource of Epstein-Barr virus (EBV) immortalized lymphoblastoid cell line (LCL) repositories generated from a wide array of patients in genetic and epidemiological studies worldwide, many of them with extensive genotypic, genomic and phenotypic data already existing, provides a great opportunity to reprogram iPSCs from any of these LCL donors in the context of their own genetic identity for disease modeling and disease gene identification. However, due to the low reprogramming efficiency and poor success rate of LCL to iPSC reprogramming, these LCL resources remain severely underused for this purpose. Here, we detailed step-by-step instructions to perform our highly efficient LCL-to-iPSC reprogramming protocol using EBNA1/OriP episomal plasmids encoding pluripotency transcription factors (<i>i.e.</i>, OCT3/4, SOX2, KLF4, L-MYC, and LIN28), mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate (> 200 reprogrammed iPSC lines) using this protocol.</p>\",\"PeriodicalId\":73618,\"journal\":{\"name\":\"Journal of biological methods\",\"volume\":\"7 1\",\"pages\":\"e124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/93/jbm-7-1-e124.PMC6974695.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14440/jbm.2020.296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2020.296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于组织培养的人类遗传性疾病体外实验模型提供了对所涉及的细胞和分子机制以及影响疾病表型的潜在遗传成分的深入了解。诱导多能干细胞(iPSC)技术的突破性发展代表了人类疾病实验建模的巨大飞跃,为研究人员提供了一种自我更新的无限多能细胞来源,用于定向分化为功能相关的疾病特异性组织/细胞类型。eb病毒(EBV)永生化淋巴母细胞系(LCL)储存库的丰富生物资源来自世界各地的遗传和流行病学研究中的大量患者,其中许多人已经拥有广泛的基因型,基因组和表型数据,为在其自身遗传身份的背景下重新编程来自任何LCL供体的iPSCs提供了良好的机会,用于疾病建模和疾病基因鉴定。然而,由于LCL到iPSC重编程的效率较低,成功率较低,这些LCL资源在这方面的利用仍然严重不足。在这里,我们详细说明了如何使用EBNA1/OriP外生质粒编码多能转录因子(即OCT3/4, SOX2, KLF4, L-MYC和LIN28),小鼠p53DD (p53羧基端显性阴性片段)和市售重编程介质来执行高效的lcl - ipsc重编程协议。使用该协议,我们实现了持续的高重编程效率和100%的成功率(> 200个重编程iPSC系)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines.

Tissue culture based in-vitro experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and thus unlimited source of pluripotent cells for targeted differentiation into functionally relevant disease specific tissue/cell types. The existing rich bio-resource of Epstein-Barr virus (EBV) immortalized lymphoblastoid cell line (LCL) repositories generated from a wide array of patients in genetic and epidemiological studies worldwide, many of them with extensive genotypic, genomic and phenotypic data already existing, provides a great opportunity to reprogram iPSCs from any of these LCL donors in the context of their own genetic identity for disease modeling and disease gene identification. However, due to the low reprogramming efficiency and poor success rate of LCL to iPSC reprogramming, these LCL resources remain severely underused for this purpose. Here, we detailed step-by-step instructions to perform our highly efficient LCL-to-iPSC reprogramming protocol using EBNA1/OriP episomal plasmids encoding pluripotency transcription factors (i.e., OCT3/4, SOX2, KLF4, L-MYC, and LIN28), mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate (> 200 reprogrammed iPSC lines) using this protocol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study. Combined T1-weighted MRI and diffusion MRI tractography of paraventricular, locus coeruleus, and dorsal vagal complex connectivity in brainstem-hypothalamic nuclei. Hematological parameters of the European hake (Merluccius merluccius) in Toroneos Gulf, northern Greece: A case study. Advanced UltraTech approach for distinguishing granulomatous from non-granulomatous corneal endothelial exudates in autoimmune rheumatic anterior uveitis. Extraordinary variance in meta-analysis of venom toxicity of 160 most lethal ophidians and guidelines for estimating human lethal dose range.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1