脊椎动物大脑发育、功能和疾病中的 FOXP 转录因子。

Q1 Biochemistry, Genetics and Molecular Biology Wiley Interdisciplinary Reviews: Developmental Biology Pub Date : 2020-09-01 Epub Date: 2020-01-30 DOI:10.1002/wdev.375
Marissa Co, Ashley G Anderson, Genevieve Konopka
{"title":"脊椎动物大脑发育、功能和疾病中的 FOXP 转录因子。","authors":"Marissa Co, Ashley G Anderson, Genevieve Konopka","doi":"10.1002/wdev.375","DOIUrl":null,"url":null,"abstract":"<p><p>FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"9 5","pages":"e375"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286808/pdf/nihms-1718913.pdf","citationCount":"0","resultStr":"{\"title\":\"FOXP transcription factors in vertebrate brain development, function, and disorders.\",\"authors\":\"Marissa Co, Ashley G Anderson, Genevieve Konopka\",\"doi\":\"10.1002/wdev.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"9 5\",\"pages\":\"e375\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286808/pdf/nihms-1718913.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

FOXP 转录因子是一个进化古老的蛋白质亚家族,协调着脊椎动物体内多个器官系统的发育。它们的基因与神经发育障碍有关,这引发了人们对它们在大脑中的表达模式和功能的特别兴趣。在这里,FOXP1、FOXP2 和 FOXP4 在大脑皮层、海马、杏仁核、基底节、丘脑和小脑等多个区域以不同的细胞类型特异性时空模式表达。这些不同的表达部位和时间点使得将 FOXP1 和 FOXP2 基因突变与各自的发育障碍联系起来的工作变得更加复杂,前者影响整体神经功能,后者则特别影响言语和语言。然而,动物模型的使用,尤其是对脑区和细胞类型进行特异性操作的动物模型的使用,极大地促进了我们对 FOXP 表达模式如何成为发育障碍相关表型的基础的理解。尽管有关 FOXP 在大脑中的表达和功能的问题仍然很多,但迄今为止的研究已经阐明了这些转录因子在脊椎动物大脑发育中的作用,并极大地促进了我们对人类发育和疾病的理解。本文归类于神经系统发育 > 脊椎动物:一般原理 基因表达和转录层次结构 > 基因网络和基因组学 神经系统发育 > 脊椎动物:区域发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOXP transcription factors in vertebrate brain development, function, and disorders.

FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
期刊最新文献
Zebrafish models of acute leukemias: Current models and future directions. The macro and micro of chromosome conformation capture. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling. Single-cell RNA sequencing in Drosophila: Technologies and applications. Schwann cell development: From neural crest to myelin sheath.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1