Tunazzina Islam, Desh Ranjan, Eleanor Young, Ming Xiao, Mohammad Zubair, Harold Riethman
{"title":"REXTAL:使用链接读取的程序集的区域扩展。","authors":"Tunazzina Islam, Desh Ranjan, Eleanor Young, Ming Xiao, Mohammad Zubair, Harold Riethman","doi":"10.1007/978-3-319-94968-0_6","DOIUrl":null,"url":null,"abstract":"<p><p>It is currently impossible to get complete de-novo assembly of segmentally duplicated genome regions using genome-wide short-read datasets. Here, we devise a new computational method called Regional Extension of Assemblies Using Linked-Reads (REXTAL) for improved region-specific assembly of segmental duplication-containing DNA, leveraging genomic short-read datasets generated from large DNA molecules partitioned and barcoded using the \"Gel Bead in Emulsion\" (GEM) microfluidic method (Zheng et al., 2016). We show that using REXTAL, it is possible to extend assembly of single-copy diploid DNA into adjacent, otherwise inaccessible subtelomere segmental duplication regions and other subtelomeric gap regions. Moreover, REXTAL is computationally more efficient for the directed assembly of such regions from multiple genomes (e.g., for the comparison of structural variation) than genome-wide assembly approaches.</p>","PeriodicalId":92882,"journal":{"name":"Bioinformatics research and applications : 14th International Symposium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings. ISBRA (Conference) (14th : 2018 : Beijing, China)","volume":"10847 ","pages":"63-78"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-94968-0_6","citationCount":"2","resultStr":"{\"title\":\"REXTAL: Regional Extension of Assemblies Using Linked-Reads.\",\"authors\":\"Tunazzina Islam, Desh Ranjan, Eleanor Young, Ming Xiao, Mohammad Zubair, Harold Riethman\",\"doi\":\"10.1007/978-3-319-94968-0_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is currently impossible to get complete de-novo assembly of segmentally duplicated genome regions using genome-wide short-read datasets. Here, we devise a new computational method called Regional Extension of Assemblies Using Linked-Reads (REXTAL) for improved region-specific assembly of segmental duplication-containing DNA, leveraging genomic short-read datasets generated from large DNA molecules partitioned and barcoded using the \\\"Gel Bead in Emulsion\\\" (GEM) microfluidic method (Zheng et al., 2016). We show that using REXTAL, it is possible to extend assembly of single-copy diploid DNA into adjacent, otherwise inaccessible subtelomere segmental duplication regions and other subtelomeric gap regions. Moreover, REXTAL is computationally more efficient for the directed assembly of such regions from multiple genomes (e.g., for the comparison of structural variation) than genome-wide assembly approaches.</p>\",\"PeriodicalId\":92882,\"journal\":{\"name\":\"Bioinformatics research and applications : 14th International Symposium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings. ISBRA (Conference) (14th : 2018 : Beijing, China)\",\"volume\":\"10847 \",\"pages\":\"63-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-94968-0_6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics research and applications : 14th International Symposium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings. ISBRA (Conference) (14th : 2018 : Beijing, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-94968-0_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics research and applications : 14th International Symposium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings. ISBRA (Conference) (14th : 2018 : Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-94968-0_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
REXTAL: Regional Extension of Assemblies Using Linked-Reads.
It is currently impossible to get complete de-novo assembly of segmentally duplicated genome regions using genome-wide short-read datasets. Here, we devise a new computational method called Regional Extension of Assemblies Using Linked-Reads (REXTAL) for improved region-specific assembly of segmental duplication-containing DNA, leveraging genomic short-read datasets generated from large DNA molecules partitioned and barcoded using the "Gel Bead in Emulsion" (GEM) microfluidic method (Zheng et al., 2016). We show that using REXTAL, it is possible to extend assembly of single-copy diploid DNA into adjacent, otherwise inaccessible subtelomere segmental duplication regions and other subtelomeric gap regions. Moreover, REXTAL is computationally more efficient for the directed assembly of such regions from multiple genomes (e.g., for the comparison of structural variation) than genome-wide assembly approaches.