Rui Guo , Ningning Liu , Hao Liu , Junhua Zhang , Han Zhang , Yingchao Wang , Mirko Baruscotti , Lu Zhao , Yi Wang
{"title":"高含量筛选鉴定通脉养心丸中甘草异黄酮A是通过激活Sirt3抑制心肌细胞肥大的活性物质","authors":"Rui Guo , Ningning Liu , Hao Liu , Junhua Zhang , Han Zhang , Yingchao Wang , Mirko Baruscotti , Lu Zhao , Yi Wang","doi":"10.1016/j.phymed.2020.153171","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><strong>:</strong> Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action.</p></div><div><h3>Methods and Results</h3><p>: The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (<em>p</em> < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (<em>p</em> < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (<em>p</em> < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (<em>p</em> < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (<em>p</em> > 0.05).</p></div><div><h3>Conclusion</h3><p>: TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.</p></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phymed.2020.153171","citationCount":"8","resultStr":"{\"title\":\"High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3\",\"authors\":\"Rui Guo , Ningning Liu , Hao Liu , Junhua Zhang , Han Zhang , Yingchao Wang , Mirko Baruscotti , Lu Zhao , Yi Wang\",\"doi\":\"10.1016/j.phymed.2020.153171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><strong>:</strong> Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action.</p></div><div><h3>Methods and Results</h3><p>: The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (<em>p</em> < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (<em>p</em> < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (<em>p</em> < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (<em>p</em> < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (<em>p</em> > 0.05).</p></div><div><h3>Conclusion</h3><p>: TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.</p></div>\",\"PeriodicalId\":20212,\"journal\":{\"name\":\"Phytomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.phymed.2020.153171\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944711320300040\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711320300040","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3
Background
: Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action.
Methods and Results
: The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (p < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (p < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (p < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (p < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (p > 0.05).
Conclusion
: TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.