{"title":"果蝇嗅觉联想学习的细胞和电路机制。","authors":"Tamara Boto, Aaron Stahl, Seth M Tomchik","doi":"10.1080/01677063.2020.1715971","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly <i>Drosophila melanogaster</i> is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in <i>Drosophila</i>, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"34 1","pages":"36-46"},"PeriodicalIF":1.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2020.1715971","citationCount":"26","resultStr":"{\"title\":\"Cellular and circuit mechanisms of olfactory associative learning in <i>Drosophila</i>.\",\"authors\":\"Tamara Boto, Aaron Stahl, Seth M Tomchik\",\"doi\":\"10.1080/01677063.2020.1715971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly <i>Drosophila melanogaster</i> is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in <i>Drosophila</i>, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.</p>\",\"PeriodicalId\":16491,\"journal\":{\"name\":\"Journal of neurogenetics\",\"volume\":\"34 1\",\"pages\":\"36-46\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01677063.2020.1715971\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01677063.2020.1715971\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2020.1715971","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Cellular and circuit mechanisms of olfactory associative learning in Drosophila.
Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly Drosophila melanogaster is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in Drosophila, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms