下载PDF
{"title":"用微针贴片提取植物叶片DNA","authors":"Rajesh Paul, Emily Ostermann, Zhen Gu, Jean B. Ristaino, Qingshan Wei","doi":"10.1002/cppb.20104","DOIUrl":null,"url":null,"abstract":"<p>Isolation of high-quality DNA from infected plant specimens is an essential step for the molecular detection of plant pathogens. However, DNA isolation from plant cells surrounded by rigid polysaccharide cell walls involves complicated steps and requires benchtop laboratory equipment. As a result, plant DNA extraction is currently confined to well-equipped laboratories and sample preparation has become one of the major hurdles for on-site molecular detection of plant pathogens. To overcome this hurdle, a simple DNA extraction method from plant leaf tissues has been developed. A microneedle (MN) patch made of polyvinyl alcohol (PVA) can isolate plant or pathogenic DNA from different plant species within a minute. During DNA extraction, the polymeric MN patch penetrates into plant leaf tissues and breaks rigid plant cell walls to isolate intracellular DNA. The extracted DNA is polymerase chain reaction (PCR) amplifiable without additional purification. This minimally invasive method has successfully extracted <i>Phytophthora infestans</i> DNA from infected tomato leaves. Moreover, the MN patch could be used to isolate DNA from other plant pathogens directly in the field. Thus, it has great potential to become a rapid, on-site sample preparation technique for plant pathogen detection. © 2020 by John Wiley & Sons, Inc.</p><p><b>Basic Protocol</b>: Microneedle patch-based DNA extraction</p><p><b>Support Protocol 1</b>: Microneedle patch fabrication</p><p><b>Support Protocol 2</b>: Real-time PCR amplification of microneedle patch extracted DNA</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20104","citationCount":"16","resultStr":"{\"title\":\"DNA Extraction from Plant Leaves Using a Microneedle Patch\",\"authors\":\"Rajesh Paul, Emily Ostermann, Zhen Gu, Jean B. Ristaino, Qingshan Wei\",\"doi\":\"10.1002/cppb.20104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Isolation of high-quality DNA from infected plant specimens is an essential step for the molecular detection of plant pathogens. However, DNA isolation from plant cells surrounded by rigid polysaccharide cell walls involves complicated steps and requires benchtop laboratory equipment. As a result, plant DNA extraction is currently confined to well-equipped laboratories and sample preparation has become one of the major hurdles for on-site molecular detection of plant pathogens. To overcome this hurdle, a simple DNA extraction method from plant leaf tissues has been developed. A microneedle (MN) patch made of polyvinyl alcohol (PVA) can isolate plant or pathogenic DNA from different plant species within a minute. During DNA extraction, the polymeric MN patch penetrates into plant leaf tissues and breaks rigid plant cell walls to isolate intracellular DNA. The extracted DNA is polymerase chain reaction (PCR) amplifiable without additional purification. This minimally invasive method has successfully extracted <i>Phytophthora infestans</i> DNA from infected tomato leaves. Moreover, the MN patch could be used to isolate DNA from other plant pathogens directly in the field. Thus, it has great potential to become a rapid, on-site sample preparation technique for plant pathogen detection. © 2020 by John Wiley & Sons, Inc.</p><p><b>Basic Protocol</b>: Microneedle patch-based DNA extraction</p><p><b>Support Protocol 1</b>: Microneedle patch fabrication</p><p><b>Support Protocol 2</b>: Real-time PCR amplification of microneedle patch extracted DNA</p>\",\"PeriodicalId\":10932,\"journal\":{\"name\":\"Current protocols in plant biology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cppb.20104\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in plant biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 16
引用
批量引用