{"title":"基于离散形态特征的系统发育最大似然扩展模型。","authors":"David A Spade","doi":"10.1515/sagmb-2019-0029","DOIUrl":null,"url":null,"abstract":"<p><p>Maximum likelihood is a common method of estimating a phylogenetic tree based on a set of genetic data. However, models of evolution for certain types of genetic data are highly flawed in their specification, and this misspecification can have an adverse impact on phylogenetic inference. Our attention here is focused on extending an existing class of models for estimating phylogenetic trees from discrete morphological characters. The main advance of this work is a model that allows unequal equilibrium frequencies in the estimation of phylogenetic trees from discrete morphological character data using likelihood methods. Possible extensions of the proposed model will also be discussed.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2019-0029","citationCount":"1","resultStr":"{\"title\":\"An extended model for phylogenetic maximum likelihood based on discrete morphological characters.\",\"authors\":\"David A Spade\",\"doi\":\"10.1515/sagmb-2019-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maximum likelihood is a common method of estimating a phylogenetic tree based on a set of genetic data. However, models of evolution for certain types of genetic data are highly flawed in their specification, and this misspecification can have an adverse impact on phylogenetic inference. Our attention here is focused on extending an existing class of models for estimating phylogenetic trees from discrete morphological characters. The main advance of this work is a model that allows unequal equilibrium frequencies in the estimation of phylogenetic trees from discrete morphological character data using likelihood methods. Possible extensions of the proposed model will also be discussed.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2019-0029\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2019-0029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2019-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
An extended model for phylogenetic maximum likelihood based on discrete morphological characters.
Maximum likelihood is a common method of estimating a phylogenetic tree based on a set of genetic data. However, models of evolution for certain types of genetic data are highly flawed in their specification, and this misspecification can have an adverse impact on phylogenetic inference. Our attention here is focused on extending an existing class of models for estimating phylogenetic trees from discrete morphological characters. The main advance of this work is a model that allows unequal equilibrium frequencies in the estimation of phylogenetic trees from discrete morphological character data using likelihood methods. Possible extensions of the proposed model will also be discussed.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.