Sudhir Srivastava, Michael Merchant, Anil Rai, Shesh N Rai
{"title":"用于标准化液相色谱-质谱数据的蛋白质组学工作流程的交互式Web工具。","authors":"Sudhir Srivastava, Michael Merchant, Anil Rai, Shesh N Rai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The proteomics experiments involve several steps and there are many choices available for each step in the workflow. Therefore, standardization of proteomics workflow is an essential task for design of proteomics experiments. However, there are challenges associated with the quantitative measurements based on liquid chromatography-mass spectrometry such as heterogeneity due to technical variability and missing values.</p><p><strong>Methods: </strong>We introduce a web application, Proteomics Workflow Standardization Tool (PWST) to standardize the proteomics workflow. The tool will be helpful in deciding the most suitable choice for each step of the experimentation. This is based on identifying steps/choices with least variability such as comparing Coefficient of Variation (CV). We demonstrate the tool on data with categorical and continuous variables. We have used the special cases of general linear model, analysis of covariance and analysis of variance with fixed effects to study the effects due to various sources of variability. We have provided various options that will aid in finding the contribution of sum of squares for each variable and the CV. The user can analyze the data variability at protein and peptide level even in the presence of missing values.</p><p><strong>Availability and implementation: </strong>The source code for \"PWST\" is written in R and implemented as shiny web application that can be accessed freely from https://ulbbf.shinyapps.io/pwst/.</p>","PeriodicalId":73911,"journal":{"name":"Journal of proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interactive Web Tool for Standardizing Proteomics Workflow for Liquid Chromatography-Mass Spectrometry Data.\",\"authors\":\"Sudhir Srivastava, Michael Merchant, Anil Rai, Shesh N Rai\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The proteomics experiments involve several steps and there are many choices available for each step in the workflow. Therefore, standardization of proteomics workflow is an essential task for design of proteomics experiments. However, there are challenges associated with the quantitative measurements based on liquid chromatography-mass spectrometry such as heterogeneity due to technical variability and missing values.</p><p><strong>Methods: </strong>We introduce a web application, Proteomics Workflow Standardization Tool (PWST) to standardize the proteomics workflow. The tool will be helpful in deciding the most suitable choice for each step of the experimentation. This is based on identifying steps/choices with least variability such as comparing Coefficient of Variation (CV). We demonstrate the tool on data with categorical and continuous variables. We have used the special cases of general linear model, analysis of covariance and analysis of variance with fixed effects to study the effects due to various sources of variability. We have provided various options that will aid in finding the contribution of sum of squares for each variable and the CV. The user can analyze the data variability at protein and peptide level even in the presence of missing values.</p><p><strong>Availability and implementation: </strong>The source code for \\\"PWST\\\" is written in R and implemented as shiny web application that can be accessed freely from https://ulbbf.shinyapps.io/pwst/.</p>\",\"PeriodicalId\":73911,\"journal\":{\"name\":\"Journal of proteomics & bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive Web Tool for Standardizing Proteomics Workflow for Liquid Chromatography-Mass Spectrometry Data.
Introduction: The proteomics experiments involve several steps and there are many choices available for each step in the workflow. Therefore, standardization of proteomics workflow is an essential task for design of proteomics experiments. However, there are challenges associated with the quantitative measurements based on liquid chromatography-mass spectrometry such as heterogeneity due to technical variability and missing values.
Methods: We introduce a web application, Proteomics Workflow Standardization Tool (PWST) to standardize the proteomics workflow. The tool will be helpful in deciding the most suitable choice for each step of the experimentation. This is based on identifying steps/choices with least variability such as comparing Coefficient of Variation (CV). We demonstrate the tool on data with categorical and continuous variables. We have used the special cases of general linear model, analysis of covariance and analysis of variance with fixed effects to study the effects due to various sources of variability. We have provided various options that will aid in finding the contribution of sum of squares for each variable and the CV. The user can analyze the data variability at protein and peptide level even in the presence of missing values.
Availability and implementation: The source code for "PWST" is written in R and implemented as shiny web application that can be accessed freely from https://ulbbf.shinyapps.io/pwst/.