通过对抗性适应的交叉模态显微镜分割。

Yue Guo, Qian Wang, Oleh Krupa, Jason Stein, Guorong Wu, Kira Bradford, Ashok Krishnamurthy
{"title":"通过对抗性适应的交叉模态显微镜分割。","authors":"Yue Guo,&nbsp;Qian Wang,&nbsp;Oleh Krupa,&nbsp;Jason Stein,&nbsp;Guorong Wu,&nbsp;Kira Bradford,&nbsp;Ashok Krishnamurthy","doi":"10.1007/978-3-030-17935-9_42","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.</p>","PeriodicalId":92881,"journal":{"name":"Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)","volume":"11466 ","pages":"469-478"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062366/pdf/nihms-1559790.pdf","citationCount":"4","resultStr":"{\"title\":\"Cross Modality Microscopy Segmentation via Adversarial Adaptation.\",\"authors\":\"Yue Guo,&nbsp;Qian Wang,&nbsp;Oleh Krupa,&nbsp;Jason Stein,&nbsp;Guorong Wu,&nbsp;Kira Bradford,&nbsp;Ashok Krishnamurthy\",\"doi\":\"10.1007/978-3-030-17935-9_42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.</p>\",\"PeriodicalId\":92881,\"journal\":{\"name\":\"Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)\",\"volume\":\"11466 \",\"pages\":\"469-478\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062366/pdf/nihms-1559790.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-17935-9_42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-17935-9_42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习技术已经成功地应用于共聚焦和光片荧光显微镜获得的图像中的自动分割和定量细胞类型。然而,深度学习网络的训练需要大量手工标注的训练数据,这是一个非常耗时的操作。在本文中,我们展示了一种对抗性适应方法,将用于显微镜分割的深度网络知识从一种成像模式(例如共聚焦)转移到一种新的成像模式(例如光片),其中没有或非常有限的标记训练数据可用。有希望的分割结果表明,迁移学习方法是快速开发新成像方法分割解决方案的有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross Modality Microscopy Segmentation via Adversarial Adaptation.

Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross Modality Microscopy Segmentation via Adversarial Adaptation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1