{"title":"4D Flow with MRI。","authors":"Gilles Soulat, Patrick McCarthy, Michael Markl","doi":"10.1146/annurev-bioeng-100219-110055","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"22 ","pages":"103-126"},"PeriodicalIF":12.8000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-100219-110055","citationCount":"48","resultStr":"{\"title\":\"4D Flow with MRI.\",\"authors\":\"Gilles Soulat, Patrick McCarthy, Michael Markl\",\"doi\":\"10.1146/annurev-bioeng-100219-110055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.</p>\",\"PeriodicalId\":50757,\"journal\":{\"name\":\"Annual Review of Biomedical Engineering\",\"volume\":\"22 \",\"pages\":\"103-126\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2020-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-bioeng-100219-110055\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-bioeng-100219-110055\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-100219-110055","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.
期刊介绍:
Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.