Haiming Yang, Jingru Liang, Hang Dai, Xiaoli Wan, Zhiyue Wang
{"title":"饲粮中添加维生素A对种鹅子代肠道组织形态和免疫性能的影响。","authors":"Haiming Yang, Jingru Liang, Hang Dai, Xiaoli Wan, Zhiyue Wang","doi":"10.5713/ajas.19.0890","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The effects of maternal and offspring dietary vitamin A (VA) supplementation on early body weight, digestive tract function and immune function in goslings were studied.</p><p><strong>Methods: </strong>Yangzhou geese (180 d old) were randomly divided into 5 experimental groups of 15 females and 3 males (the males were kept until slaughter). Eggs were collected for hatching during the peak laying period. A total of 96 goslings were selected from each treatment group (each fed a basic diet supplemented with 0, 4,000, 8,000, 12,000 or 16,000 IU/kg VA) and randomly divided into 2 groups, with 6 replicates in each group and 8 goslings in each replicate. The gosling diet was supplemented with 0 or 9,000 IU/kg VA.</p><p><strong>Results: </strong>i) Villus length, villus width and the muscle thickness of the duodenum, jejunum and ileum were increased and the crypt depth was reduced after adding 12,000 IU/kg VA to the goslings' diet (p<0.05). Adding 9,000 IU/kg VA to the offspring diet increased the length of the duodenal villi and width of the ileum and decreased the crypt depth of the ileum (p<0.05). ii) Supplementing the maternal diet with 12,000 IU/kg VA increased immune organ weight, the immune organ index and immunoglobulin content in goslings (p<0.05). The bursa weight and immunoglobulin G content of offspring were higher in the 9,000 IU/kg VA supplementation group than in the group with no supplementation (p<0.05).</p><p><strong>Conclusion: </strong>Offspring growth and development were affected by the amount of VA added into maternal diet. The negative effect of maternal VA deficiency on offspring can be compensated by adding VA to the offspring diet. Continued VA supplementation in the offspring diet after excessive VA supplementation in the maternal diet is unfavorable for gosling growth and development.</p>","PeriodicalId":8558,"journal":{"name":"Asian-Australasian Journal of Animal Sciences","volume":"33 9","pages":"1463-1469"},"PeriodicalIF":2.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468167/pdf/","citationCount":"7","resultStr":"{\"title\":\"Effects of vitamin A supplementation in the diet of breeding geese on offspring intestinal tissue morphology and immune performance.\",\"authors\":\"Haiming Yang, Jingru Liang, Hang Dai, Xiaoli Wan, Zhiyue Wang\",\"doi\":\"10.5713/ajas.19.0890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The effects of maternal and offspring dietary vitamin A (VA) supplementation on early body weight, digestive tract function and immune function in goslings were studied.</p><p><strong>Methods: </strong>Yangzhou geese (180 d old) were randomly divided into 5 experimental groups of 15 females and 3 males (the males were kept until slaughter). Eggs were collected for hatching during the peak laying period. A total of 96 goslings were selected from each treatment group (each fed a basic diet supplemented with 0, 4,000, 8,000, 12,000 or 16,000 IU/kg VA) and randomly divided into 2 groups, with 6 replicates in each group and 8 goslings in each replicate. The gosling diet was supplemented with 0 or 9,000 IU/kg VA.</p><p><strong>Results: </strong>i) Villus length, villus width and the muscle thickness of the duodenum, jejunum and ileum were increased and the crypt depth was reduced after adding 12,000 IU/kg VA to the goslings' diet (p<0.05). Adding 9,000 IU/kg VA to the offspring diet increased the length of the duodenal villi and width of the ileum and decreased the crypt depth of the ileum (p<0.05). ii) Supplementing the maternal diet with 12,000 IU/kg VA increased immune organ weight, the immune organ index and immunoglobulin content in goslings (p<0.05). The bursa weight and immunoglobulin G content of offspring were higher in the 9,000 IU/kg VA supplementation group than in the group with no supplementation (p<0.05).</p><p><strong>Conclusion: </strong>Offspring growth and development were affected by the amount of VA added into maternal diet. The negative effect of maternal VA deficiency on offspring can be compensated by adding VA to the offspring diet. Continued VA supplementation in the offspring diet after excessive VA supplementation in the maternal diet is unfavorable for gosling growth and development.</p>\",\"PeriodicalId\":8558,\"journal\":{\"name\":\"Asian-Australasian Journal of Animal Sciences\",\"volume\":\"33 9\",\"pages\":\"1463-1469\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468167/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian-Australasian Journal of Animal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5713/ajas.19.0890\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-Australasian Journal of Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5713/ajas.19.0890","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of vitamin A supplementation in the diet of breeding geese on offspring intestinal tissue morphology and immune performance.
Objective: The effects of maternal and offspring dietary vitamin A (VA) supplementation on early body weight, digestive tract function and immune function in goslings were studied.
Methods: Yangzhou geese (180 d old) were randomly divided into 5 experimental groups of 15 females and 3 males (the males were kept until slaughter). Eggs were collected for hatching during the peak laying period. A total of 96 goslings were selected from each treatment group (each fed a basic diet supplemented with 0, 4,000, 8,000, 12,000 or 16,000 IU/kg VA) and randomly divided into 2 groups, with 6 replicates in each group and 8 goslings in each replicate. The gosling diet was supplemented with 0 or 9,000 IU/kg VA.
Results: i) Villus length, villus width and the muscle thickness of the duodenum, jejunum and ileum were increased and the crypt depth was reduced after adding 12,000 IU/kg VA to the goslings' diet (p<0.05). Adding 9,000 IU/kg VA to the offspring diet increased the length of the duodenal villi and width of the ileum and decreased the crypt depth of the ileum (p<0.05). ii) Supplementing the maternal diet with 12,000 IU/kg VA increased immune organ weight, the immune organ index and immunoglobulin content in goslings (p<0.05). The bursa weight and immunoglobulin G content of offspring were higher in the 9,000 IU/kg VA supplementation group than in the group with no supplementation (p<0.05).
Conclusion: Offspring growth and development were affected by the amount of VA added into maternal diet. The negative effect of maternal VA deficiency on offspring can be compensated by adding VA to the offspring diet. Continued VA supplementation in the offspring diet after excessive VA supplementation in the maternal diet is unfavorable for gosling growth and development.
期刊介绍:
Asian-Australasian Journal of Animal Sciences (AJAS) aims to publish original and cutting-edge research results and reviews on animal-related aspects of the life sciences. Emphasis will be placed on studies involving farm animals such as cattle, buffaloes, sheep, goats, pigs, horses, and poultry. Studies for the improvement of human health using animal models may also be publishable.
AJAS will encompass all areas of animal production and fundamental aspects of animal sciences: breeding and genetics, reproduction and physiology, nutrition, meat and milk science, biotechnology, behavior, welfare, health, and livestock farming systems.