治疗单侧耳聋和传导性或混合性听力损失的植入式设备:健康技术评估。

Q1 Medicine Ontario Health Technology Assessment Series Pub Date : 2020-03-06 eCollection Date: 2020-01-01
{"title":"治疗单侧耳聋和传导性或混合性听力损失的植入式设备:健康技术评估。","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-sided deafness refers to profound sensorineural hearing loss or non-functional hearing in one ear, with normal or near-normal hearing in the other ear. Its hallmark is the inability to localize sound and hear in noisy environments. Conductive hearing loss occurs when there is a mechanical problem with the conduction of sound vibrations. Mixed hearing loss is a combination of sensorineural and conductive hearing loss. Conductive and mixed hearing loss, which frequently affect both ears, create additional challenges in learning, employment, and quality of life. Cochlear implants and bone-conduction implants may offer objective and subjective benefits of hearing for people with these conditions who are deemed inappropriate candidates for standard hearing aids and do not meet the current indication (i.e., bilateral deafness) for publicly funded cochlear implants in Canada.</p><p><strong>Methods: </strong>We conducted a health technology assessment, which included an evaluation of clinical benefits and harms, cost-effectiveness, budget impact, and patient preferences and values related to implantable devices for single-sided deafness and conductive or mixed hearing loss. We performed a systematic literature search for systematic reviews and cost-effectiveness studies of cochlear implants and bone-conduction implants, compared to no interventions, for these conditions in adults and children. We conducted cost-utility analyses and budget impact analyses from the perspective of the Ontario Ministry of Health to examine the impact of publicly funding both types of hearing implants for the defined populations. We also interviewed 22 patients and parents of children about their experience with hearing loss and hearing implants.</p><p><strong>Results: </strong>We included 20 publications in the clinical evidence review. For adults and children with single-sided deafness, cochlear implantation when compared with no treatment improves speech perception in noise (% correct responses: 43% vs. 15%, <i>P</i> < .01; GRADE: Moderate), sound localization (localization error: 14° vs. 41°, <i>P</i> < .01; GRADE: Moderate), tinnitus (Visual Analog Scale, loudness: 3.5 vs. 8.5, <i>P</i> < .01; GRADE: Moderate), and hearing-specific quality of life (Speech Spatial and Qualities of Hearing Scale, speech: 5.8 vs. 2.6, <i>P</i> = .01; spatial: 5.7 vs. 2.3, <i>P</i> < .01; GRADE: Moderate); for children, speech and language development also improve (GRADE: Moderate). For those with single-sided deafness in whom cochlear implantation is contraindicated, bone-conduction implants when compared with no intervention provide clinically important functional gains in hearing thresholds (36-41 dB improvement in pure tone audiometry and 38-56 dB improvement in speech reception threshold, <i>P</i> < .05; GRADE: Moderate) and improve speech perception in noise (signal-to-noise ratio -2.0 vs. 0.6, <i>P</i> < .05 for active percutaneous devices; signal-to-noise ratio improved by 1.3-2.5 dB, <i>P</i> < .05 for active transcutaneous devices; GRADE: Moderate) and hearing-specific quality of life (Abbreviated Profile for Hearing Aid Benefit, ease of communication: 12%-53% vs. 24%-59%; background noise: 18%-48% vs. 33%-79%; listening in reverberant condition: 26%-55% vs. 41%-65%, <i>P</i> < .05 [active percutaneous devices]; ease of communication: 7% vs. 20%; background noise: 46% vs. 69%; listening in reverberant condition: 27% vs. 43%; <i>P</i> < .05 [active transcutaneous devices]; Children's Home Inventory for Listening Difficulties score 7.3 vs. 3.4; <i>P</i> < .05 [passive transcutaneous devices]; GRADE: Moderate). For those with conductive or mixed hearing loss, bone-conduction implants when compared with no intervention improve hearing thresholds (improved 19-45 dB [active percutaneous devices], improved 24-37 dB [active transcutaneous devices], improved 31 dB [passive transcutaneous devices], and improved 21-49 dB [active transcutaneous middle-ear implants]; GRADE: Moderate), speech perception (% correct: 77%-93% vs. < 25%; <i>P</i> < .05 [active transcutaneous devices], % speech recognition: 55%-98% vs. 0-72%; <i>P</i> < .05 [active transcutaneous middle-ear implants]; GRADE: Moderate), and hearing-specific quality of life and subjective benefits of hearing (GRADE: Moderate).In the cost-utility analyses, cochlear implants for adults and children with single-sided deafness provided greater health gains for an incremental cost, compared with no intervention. On average, the incremental cost-effectiveness ratio (ICER) was between $17,783 and $18,148 per quality-adjusted life-year (QALY). At a willingness-to-pay of $100,000 per QALY, 70% of the simulations were considered cost-effective. For the same population, bone-conduction implants were not likely to be cost-effective compared with no intervention (ICER: $402,899-$408,350/QALY). Only 38% of simulations were considered cost-effective at a willingness-to-pay of $100,000 per QALY. For adults and children with conductive or mixed hearing loss, bone-conduction implants may be cost-effective compared with no intervention (ICER: $74,155-$87,580/QALY). However, there was considerable uncertainty in the results. At a willingness-to-pay of $100,000 per QALY, only 50% to 55% of simulations were cost-effective. In sensitivity analyses, results were most sensitive to changes in health-related utilities (measured using generic quality-of-life tools), highlighting the limitations of currently published data (i.e., small sample sizes and short follow-up).For people with single-sided deafness, publicly funding cochlear implants in Ontario would result in an estimated additional cost of $2.8 million to $3.6 million in total over the next 5 years, and an additional $0.8 million would be required for bone-conduction implants for this population. For people with conductive or mixed hearing loss, publicly funding bone-conduction implants would cost an estimated additional $3.1 million to $3.3 million in total over the next 5 years.In interviews, people with single-sided deafness and conductive or mixed hearing loss reported that standard hearing aids did not meet their expectations; therefore, they chose to undergo surgery for an implantable device. Most participants with experience of a cochlear implant or bone-conduction implant spoke positively about being able to hear better and enjoy a better quality of life. People with a cochlear implant reported additional benefits: binaural hearing, better sound localization, and better hearing in noisy areas. Cost and access were barriers to receiving an implantable device.</p><p><strong>Conclusions: </strong>Based on evidence of moderate quality, cochlear implantation and bone-conduction implants improve functional and patient-important outcomes in adults and children with single-sided deafness and conductive or mixed hearing loss. Qualitative results of interviews with patients are consistent with the findings of the systematic reviews we examined.Among people with single-sided deafness, cochlear implants may be cost-effective compared with no intervention, but bone-conduction implants are unlikely to be. Among people with conductive or mixed hearing loss, bone-conduction implants may be cost-effective compared with no intervention. Results and uncertainty are mainly driven by changes in health utilities associated with having a hearing implant. Hence, further research on utility values in this population is warranted with larger sample sizes and longer follow-up.The 5-year cost of publicly funding both types of hearing implant for single-sided deafness and conductive or mixed hearing loss in Ontario is estimated to be $6.7 million to $7.8 million.</p>","PeriodicalId":39160,"journal":{"name":"Ontario Health Technology Assessment Series","volume":"20 1","pages":"1-165"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080453/pdf/ohtas-20-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Implantable Devices for Single-Sided Deafness and Conductive or Mixed Hearing Loss: A Health Technology Assessment.\",\"authors\":\"\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Single-sided deafness refers to profound sensorineural hearing loss or non-functional hearing in one ear, with normal or near-normal hearing in the other ear. Its hallmark is the inability to localize sound and hear in noisy environments. Conductive hearing loss occurs when there is a mechanical problem with the conduction of sound vibrations. Mixed hearing loss is a combination of sensorineural and conductive hearing loss. Conductive and mixed hearing loss, which frequently affect both ears, create additional challenges in learning, employment, and quality of life. Cochlear implants and bone-conduction implants may offer objective and subjective benefits of hearing for people with these conditions who are deemed inappropriate candidates for standard hearing aids and do not meet the current indication (i.e., bilateral deafness) for publicly funded cochlear implants in Canada.</p><p><strong>Methods: </strong>We conducted a health technology assessment, which included an evaluation of clinical benefits and harms, cost-effectiveness, budget impact, and patient preferences and values related to implantable devices for single-sided deafness and conductive or mixed hearing loss. We performed a systematic literature search for systematic reviews and cost-effectiveness studies of cochlear implants and bone-conduction implants, compared to no interventions, for these conditions in adults and children. We conducted cost-utility analyses and budget impact analyses from the perspective of the Ontario Ministry of Health to examine the impact of publicly funding both types of hearing implants for the defined populations. We also interviewed 22 patients and parents of children about their experience with hearing loss and hearing implants.</p><p><strong>Results: </strong>We included 20 publications in the clinical evidence review. For adults and children with single-sided deafness, cochlear implantation when compared with no treatment improves speech perception in noise (% correct responses: 43% vs. 15%, <i>P</i> < .01; GRADE: Moderate), sound localization (localization error: 14° vs. 41°, <i>P</i> < .01; GRADE: Moderate), tinnitus (Visual Analog Scale, loudness: 3.5 vs. 8.5, <i>P</i> < .01; GRADE: Moderate), and hearing-specific quality of life (Speech Spatial and Qualities of Hearing Scale, speech: 5.8 vs. 2.6, <i>P</i> = .01; spatial: 5.7 vs. 2.3, <i>P</i> < .01; GRADE: Moderate); for children, speech and language development also improve (GRADE: Moderate). For those with single-sided deafness in whom cochlear implantation is contraindicated, bone-conduction implants when compared with no intervention provide clinically important functional gains in hearing thresholds (36-41 dB improvement in pure tone audiometry and 38-56 dB improvement in speech reception threshold, <i>P</i> < .05; GRADE: Moderate) and improve speech perception in noise (signal-to-noise ratio -2.0 vs. 0.6, <i>P</i> < .05 for active percutaneous devices; signal-to-noise ratio improved by 1.3-2.5 dB, <i>P</i> < .05 for active transcutaneous devices; GRADE: Moderate) and hearing-specific quality of life (Abbreviated Profile for Hearing Aid Benefit, ease of communication: 12%-53% vs. 24%-59%; background noise: 18%-48% vs. 33%-79%; listening in reverberant condition: 26%-55% vs. 41%-65%, <i>P</i> < .05 [active percutaneous devices]; ease of communication: 7% vs. 20%; background noise: 46% vs. 69%; listening in reverberant condition: 27% vs. 43%; <i>P</i> < .05 [active transcutaneous devices]; Children's Home Inventory for Listening Difficulties score 7.3 vs. 3.4; <i>P</i> < .05 [passive transcutaneous devices]; GRADE: Moderate). For those with conductive or mixed hearing loss, bone-conduction implants when compared with no intervention improve hearing thresholds (improved 19-45 dB [active percutaneous devices], improved 24-37 dB [active transcutaneous devices], improved 31 dB [passive transcutaneous devices], and improved 21-49 dB [active transcutaneous middle-ear implants]; GRADE: Moderate), speech perception (% correct: 77%-93% vs. < 25%; <i>P</i> < .05 [active transcutaneous devices], % speech recognition: 55%-98% vs. 0-72%; <i>P</i> < .05 [active transcutaneous middle-ear implants]; GRADE: Moderate), and hearing-specific quality of life and subjective benefits of hearing (GRADE: Moderate).In the cost-utility analyses, cochlear implants for adults and children with single-sided deafness provided greater health gains for an incremental cost, compared with no intervention. On average, the incremental cost-effectiveness ratio (ICER) was between $17,783 and $18,148 per quality-adjusted life-year (QALY). At a willingness-to-pay of $100,000 per QALY, 70% of the simulations were considered cost-effective. For the same population, bone-conduction implants were not likely to be cost-effective compared with no intervention (ICER: $402,899-$408,350/QALY). Only 38% of simulations were considered cost-effective at a willingness-to-pay of $100,000 per QALY. For adults and children with conductive or mixed hearing loss, bone-conduction implants may be cost-effective compared with no intervention (ICER: $74,155-$87,580/QALY). However, there was considerable uncertainty in the results. At a willingness-to-pay of $100,000 per QALY, only 50% to 55% of simulations were cost-effective. In sensitivity analyses, results were most sensitive to changes in health-related utilities (measured using generic quality-of-life tools), highlighting the limitations of currently published data (i.e., small sample sizes and short follow-up).For people with single-sided deafness, publicly funding cochlear implants in Ontario would result in an estimated additional cost of $2.8 million to $3.6 million in total over the next 5 years, and an additional $0.8 million would be required for bone-conduction implants for this population. For people with conductive or mixed hearing loss, publicly funding bone-conduction implants would cost an estimated additional $3.1 million to $3.3 million in total over the next 5 years.In interviews, people with single-sided deafness and conductive or mixed hearing loss reported that standard hearing aids did not meet their expectations; therefore, they chose to undergo surgery for an implantable device. Most participants with experience of a cochlear implant or bone-conduction implant spoke positively about being able to hear better and enjoy a better quality of life. People with a cochlear implant reported additional benefits: binaural hearing, better sound localization, and better hearing in noisy areas. Cost and access were barriers to receiving an implantable device.</p><p><strong>Conclusions: </strong>Based on evidence of moderate quality, cochlear implantation and bone-conduction implants improve functional and patient-important outcomes in adults and children with single-sided deafness and conductive or mixed hearing loss. Qualitative results of interviews with patients are consistent with the findings of the systematic reviews we examined.Among people with single-sided deafness, cochlear implants may be cost-effective compared with no intervention, but bone-conduction implants are unlikely to be. Among people with conductive or mixed hearing loss, bone-conduction implants may be cost-effective compared with no intervention. Results and uncertainty are mainly driven by changes in health utilities associated with having a hearing implant. Hence, further research on utility values in this population is warranted with larger sample sizes and longer follow-up.The 5-year cost of publicly funding both types of hearing implant for single-sided deafness and conductive or mixed hearing loss in Ontario is estimated to be $6.7 million to $7.8 million.</p>\",\"PeriodicalId\":39160,\"journal\":{\"name\":\"Ontario Health Technology Assessment Series\",\"volume\":\"20 1\",\"pages\":\"1-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080453/pdf/ohtas-20-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ontario Health Technology Assessment Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ontario Health Technology Assessment Series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

对于患有传导性或混合性听力损失的成人和儿童而言,骨传导植入体与不采取任何干预措施相比可能具有成本效益(ICER:74,155-87,580 美元/QALY)。然而,研究结果存在很大的不确定性。在每 QALY 100,000 美元的支付意愿下,只有 50% 到 55% 的模拟结果具有成本效益。在敏感性分析中,结果对健康相关效用(使用通用生活质量工具测量)的变化最为敏感,这凸显了目前已公布数据的局限性(即样本量小、随访时间短)。对于单侧耳聋患者,安大略省政府资助人工耳蜗植入术估计将在未来 5 年内增加总计 280 万至 360 万美元的费用,该人群的骨传导植入术将需要额外 80 万美元。在访谈中,单侧耳聋和传导性或混合性听力损失患者表示,标准助听器无法满足他们的期望;因此,他们选择接受植入式设备手术。大多数有过植入人工耳蜗或骨传导植入体经历的人都对能够听到更好的声音和享受更好的生活质量给予了积极评价。植入人工耳蜗的人报告了额外的好处:双耳听力、更好的声音定位以及在嘈杂环境中听力更好。费用和获取途径是接受植入式设备的障碍:根据中等质量的证据,人工耳蜗植入和骨传导植入可改善单侧耳聋、传导性或混合性听力损失的成人和儿童的功能和患者重要的结果。与患者访谈的定性结果与我们研究的系统综述结果一致。在单侧耳聋患者中,与不采取任何干预措施相比,人工耳蜗植入可能具有成本效益,但骨传导植入不太可能具有成本效益。在传导性或混合性听力损失患者中,与不采取任何干预措施相比,骨传导植入可能具有成本效益。结果和不确定性主要是由与听力植入相关的健康效用的变化引起的。在安大略省,由政府出资为单侧耳聋和传导性或混合性听力损失患者植入两种类型的听力植入体的 5 年成本估计为 670 万至 780 万加元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implantable Devices for Single-Sided Deafness and Conductive or Mixed Hearing Loss: A Health Technology Assessment.

Background: Single-sided deafness refers to profound sensorineural hearing loss or non-functional hearing in one ear, with normal or near-normal hearing in the other ear. Its hallmark is the inability to localize sound and hear in noisy environments. Conductive hearing loss occurs when there is a mechanical problem with the conduction of sound vibrations. Mixed hearing loss is a combination of sensorineural and conductive hearing loss. Conductive and mixed hearing loss, which frequently affect both ears, create additional challenges in learning, employment, and quality of life. Cochlear implants and bone-conduction implants may offer objective and subjective benefits of hearing for people with these conditions who are deemed inappropriate candidates for standard hearing aids and do not meet the current indication (i.e., bilateral deafness) for publicly funded cochlear implants in Canada.

Methods: We conducted a health technology assessment, which included an evaluation of clinical benefits and harms, cost-effectiveness, budget impact, and patient preferences and values related to implantable devices for single-sided deafness and conductive or mixed hearing loss. We performed a systematic literature search for systematic reviews and cost-effectiveness studies of cochlear implants and bone-conduction implants, compared to no interventions, for these conditions in adults and children. We conducted cost-utility analyses and budget impact analyses from the perspective of the Ontario Ministry of Health to examine the impact of publicly funding both types of hearing implants for the defined populations. We also interviewed 22 patients and parents of children about their experience with hearing loss and hearing implants.

Results: We included 20 publications in the clinical evidence review. For adults and children with single-sided deafness, cochlear implantation when compared with no treatment improves speech perception in noise (% correct responses: 43% vs. 15%, P < .01; GRADE: Moderate), sound localization (localization error: 14° vs. 41°, P < .01; GRADE: Moderate), tinnitus (Visual Analog Scale, loudness: 3.5 vs. 8.5, P < .01; GRADE: Moderate), and hearing-specific quality of life (Speech Spatial and Qualities of Hearing Scale, speech: 5.8 vs. 2.6, P = .01; spatial: 5.7 vs. 2.3, P < .01; GRADE: Moderate); for children, speech and language development also improve (GRADE: Moderate). For those with single-sided deafness in whom cochlear implantation is contraindicated, bone-conduction implants when compared with no intervention provide clinically important functional gains in hearing thresholds (36-41 dB improvement in pure tone audiometry and 38-56 dB improvement in speech reception threshold, P < .05; GRADE: Moderate) and improve speech perception in noise (signal-to-noise ratio -2.0 vs. 0.6, P < .05 for active percutaneous devices; signal-to-noise ratio improved by 1.3-2.5 dB, P < .05 for active transcutaneous devices; GRADE: Moderate) and hearing-specific quality of life (Abbreviated Profile for Hearing Aid Benefit, ease of communication: 12%-53% vs. 24%-59%; background noise: 18%-48% vs. 33%-79%; listening in reverberant condition: 26%-55% vs. 41%-65%, P < .05 [active percutaneous devices]; ease of communication: 7% vs. 20%; background noise: 46% vs. 69%; listening in reverberant condition: 27% vs. 43%; P < .05 [active transcutaneous devices]; Children's Home Inventory for Listening Difficulties score 7.3 vs. 3.4; P < .05 [passive transcutaneous devices]; GRADE: Moderate). For those with conductive or mixed hearing loss, bone-conduction implants when compared with no intervention improve hearing thresholds (improved 19-45 dB [active percutaneous devices], improved 24-37 dB [active transcutaneous devices], improved 31 dB [passive transcutaneous devices], and improved 21-49 dB [active transcutaneous middle-ear implants]; GRADE: Moderate), speech perception (% correct: 77%-93% vs. < 25%; P < .05 [active transcutaneous devices], % speech recognition: 55%-98% vs. 0-72%; P < .05 [active transcutaneous middle-ear implants]; GRADE: Moderate), and hearing-specific quality of life and subjective benefits of hearing (GRADE: Moderate).In the cost-utility analyses, cochlear implants for adults and children with single-sided deafness provided greater health gains for an incremental cost, compared with no intervention. On average, the incremental cost-effectiveness ratio (ICER) was between $17,783 and $18,148 per quality-adjusted life-year (QALY). At a willingness-to-pay of $100,000 per QALY, 70% of the simulations were considered cost-effective. For the same population, bone-conduction implants were not likely to be cost-effective compared with no intervention (ICER: $402,899-$408,350/QALY). Only 38% of simulations were considered cost-effective at a willingness-to-pay of $100,000 per QALY. For adults and children with conductive or mixed hearing loss, bone-conduction implants may be cost-effective compared with no intervention (ICER: $74,155-$87,580/QALY). However, there was considerable uncertainty in the results. At a willingness-to-pay of $100,000 per QALY, only 50% to 55% of simulations were cost-effective. In sensitivity analyses, results were most sensitive to changes in health-related utilities (measured using generic quality-of-life tools), highlighting the limitations of currently published data (i.e., small sample sizes and short follow-up).For people with single-sided deafness, publicly funding cochlear implants in Ontario would result in an estimated additional cost of $2.8 million to $3.6 million in total over the next 5 years, and an additional $0.8 million would be required for bone-conduction implants for this population. For people with conductive or mixed hearing loss, publicly funding bone-conduction implants would cost an estimated additional $3.1 million to $3.3 million in total over the next 5 years.In interviews, people with single-sided deafness and conductive or mixed hearing loss reported that standard hearing aids did not meet their expectations; therefore, they chose to undergo surgery for an implantable device. Most participants with experience of a cochlear implant or bone-conduction implant spoke positively about being able to hear better and enjoy a better quality of life. People with a cochlear implant reported additional benefits: binaural hearing, better sound localization, and better hearing in noisy areas. Cost and access were barriers to receiving an implantable device.

Conclusions: Based on evidence of moderate quality, cochlear implantation and bone-conduction implants improve functional and patient-important outcomes in adults and children with single-sided deafness and conductive or mixed hearing loss. Qualitative results of interviews with patients are consistent with the findings of the systematic reviews we examined.Among people with single-sided deafness, cochlear implants may be cost-effective compared with no intervention, but bone-conduction implants are unlikely to be. Among people with conductive or mixed hearing loss, bone-conduction implants may be cost-effective compared with no intervention. Results and uncertainty are mainly driven by changes in health utilities associated with having a hearing implant. Hence, further research on utility values in this population is warranted with larger sample sizes and longer follow-up.The 5-year cost of publicly funding both types of hearing implant for single-sided deafness and conductive or mixed hearing loss in Ontario is estimated to be $6.7 million to $7.8 million.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ontario Health Technology Assessment Series
Ontario Health Technology Assessment Series Medicine-Medicine (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Level 2 Polysomnography for the Diagnosis of Sleep Disorders: A Health Technology Assessment. Pelvic Floor Muscle Training for Stress Urinary Incontinence, Fecal Incontinence, and Pelvic Organ Prolapse: A Health Technology Assessment. Fractional Exhaled Nitric Oxide Testing for the Diagnosis and Management of Asthma: a Health Technology Assessment. Sucrose Octasulfate-Impregnated Dressings for Adults With Difficult-to-Heal Noninfected Diabetic Foot Ulcers and Difficult-to-Heal Noninfected Venous Leg Ulcers: A Health Technology Assessment. Robotic-Assisted Surgery for Rectal Cancer: An Expedited Summary of the Clinical Evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1