{"title":"金属薄膜在可见光和紫外线下与结构相关的光学特性。","authors":"H E Bennett, J L Stanford","doi":"10.6028/jres.080A.064","DOIUrl":null,"url":null,"abstract":"Surface irregularities and crystalline order strongly influence both the scattered light and absorption of metallic films. These effects extend through all spectral regions but are particularly important in the visible and ultraviolet. Scattered light arises from several scattering mechanisms. Macroscopic irregularities such as dust, scratches and particulates are typically much less important than are microirregularities only a few tens of angstroms in height but covering the entire surface. For metals such as silver and aluminum, which have plasma edges in the ultraviolet, the excitation of surface plasmons resulting from these microirregularities causes additional incoherently reemitted or “scattered” light. Surface plasmon excitation also causes increased absorption in some wavelength regions. These effects are enhanced by dielectric overcoating layers, which both increase the absorption and scattering and shift the wavelength at which the peak occurs. Surface plasmon excitation is particularly important in the ultraviolet region, where the dielectric overcoating applied to prevent formation of an oxide film on aluminized mirrors, for example, can significantly change the mirror reflectance. Plasmon excitation is made possible by a momentum conserving process associated with material inhomogeneities and hence can presumably be caused by crystalline disorder in the metal surface as well as surface irregularities. If the disorder is present on a sufficiently fine scale, it also affects the band structure of the metal and hence its optical absorption. Examples of the effect of film structure on the optical properties of evaporated and sputtered metal films will be given.","PeriodicalId":17018,"journal":{"name":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","volume":"80A 4","pages":"643-658"},"PeriodicalIF":0.0000,"publicationDate":"1976-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293531/pdf/","citationCount":"26","resultStr":"{\"title\":\"Structure-Related Optical Characteristics of Thin Metallic Films in the Visible and Ultraviolet.\",\"authors\":\"H E Bennett, J L Stanford\",\"doi\":\"10.6028/jres.080A.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface irregularities and crystalline order strongly influence both the scattered light and absorption of metallic films. These effects extend through all spectral regions but are particularly important in the visible and ultraviolet. Scattered light arises from several scattering mechanisms. Macroscopic irregularities such as dust, scratches and particulates are typically much less important than are microirregularities only a few tens of angstroms in height but covering the entire surface. For metals such as silver and aluminum, which have plasma edges in the ultraviolet, the excitation of surface plasmons resulting from these microirregularities causes additional incoherently reemitted or “scattered” light. Surface plasmon excitation also causes increased absorption in some wavelength regions. These effects are enhanced by dielectric overcoating layers, which both increase the absorption and scattering and shift the wavelength at which the peak occurs. Surface plasmon excitation is particularly important in the ultraviolet region, where the dielectric overcoating applied to prevent formation of an oxide film on aluminized mirrors, for example, can significantly change the mirror reflectance. Plasmon excitation is made possible by a momentum conserving process associated with material inhomogeneities and hence can presumably be caused by crystalline disorder in the metal surface as well as surface irregularities. If the disorder is present on a sufficiently fine scale, it also affects the band structure of the metal and hence its optical absorption. Examples of the effect of film structure on the optical properties of evaporated and sputtered metal films will be given.\",\"PeriodicalId\":17018,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"volume\":\"80A 4\",\"pages\":\"643-658\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293531/pdf/\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.080A.064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"1976/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.080A.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"1976/8/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Structure-Related Optical Characteristics of Thin Metallic Films in the Visible and Ultraviolet.
Surface irregularities and crystalline order strongly influence both the scattered light and absorption of metallic films. These effects extend through all spectral regions but are particularly important in the visible and ultraviolet. Scattered light arises from several scattering mechanisms. Macroscopic irregularities such as dust, scratches and particulates are typically much less important than are microirregularities only a few tens of angstroms in height but covering the entire surface. For metals such as silver and aluminum, which have plasma edges in the ultraviolet, the excitation of surface plasmons resulting from these microirregularities causes additional incoherently reemitted or “scattered” light. Surface plasmon excitation also causes increased absorption in some wavelength regions. These effects are enhanced by dielectric overcoating layers, which both increase the absorption and scattering and shift the wavelength at which the peak occurs. Surface plasmon excitation is particularly important in the ultraviolet region, where the dielectric overcoating applied to prevent formation of an oxide film on aluminized mirrors, for example, can significantly change the mirror reflectance. Plasmon excitation is made possible by a momentum conserving process associated with material inhomogeneities and hence can presumably be caused by crystalline disorder in the metal surface as well as surface irregularities. If the disorder is present on a sufficiently fine scale, it also affects the band structure of the metal and hence its optical absorption. Examples of the effect of film structure on the optical properties of evaporated and sputtered metal films will be given.