{"title":"荧光量子产率测量。","authors":"J B Birks","doi":"10.6028/jres.080A.038","DOIUrl":null,"url":null,"abstract":"<p><p>Four <i>molecular fluorescence parameters</i> describe the behaviour of a fluorescent molecule in very dilute (~ 10<sup>-6</sup> <i>M</i>) solution: the fluorescence spectrum <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> ;the fluorescence polarization <i>P<sub>M</sub></i> ;the radiative transition probability <i>k<sub>FM</sub></i> ; andthe radiationless transition probability <i>k<sub>IM</sub></i> .These parameters and their temperature and solvent dependence are those of primary interest to the photophysicist and photochemist. <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> and <i>P<sub>M</sub></i> can be determined directly, but <i>k<sub>FM</sub></i> and <i>k<sub>IM</sub></i> can only be found indirectly from measurements of the secondary parameters,the fluorescence lifetime <i>τ<sub>M</sub></i> , andthe fluorescence quantum efficiency <i>q<sub>FM</sub></i> ,where <i>k<sub>FM</sub></i> =<i>q<sub>FM</sub>/τ<sub>M</sub></i> and <i>k<sub>IM</sub></i> =(1-<i>q<sub>FM</sub></i> ) <i>τ<sub>M</sub>.</i> The <i>real fluorescence parameters</i> <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ</i> and <i>ϕ<sub>F</sub></i> of more concentrated (<i>c</i> > 10<sup>-5</sup> <i>M</i>) solutions usually differ from the molecular parameters <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ<sub>M</sub></i> and <i>q<sub>FM</sub></i> due to concentration (self) quenching, so that <i>τ</i> > <i>τ<sub>M</sub></i> and <i>ϕ<sub>F</sub></i> < <i>q<sub>FM</sub>.</i> The concentration quenching is due to excimer formation and dissociation (rates <i>k<sub>DM</sub>c</i> and <i>k<sub>MD</sub></i> , respectively) and it is often accompanied by the appearance of an excimer fluorescence spectrum <math> <mrow><msub><mi>F</mi> <mi>D</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> in addition to <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , so that <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> has two components. The <i>excimer fluorescence parameters</i> <math> <mrow><msub><mi>F</mi> <mi>D</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>P<sub>D</sub></i> , <i>k<sub>FD</sub></i> and <i>k<sub>ID</sub></i> together with <i>k<sub>DM</sub></i> and <i>k<sub>MD</sub></i> , and their solvent and temperature dependence, are also of primary scientific interest. The <i>observed</i> (technical) <i>fluorescence parameters</i> <math> <mrow><msup><mi>F</mi> <mi>T</mi></msup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ<sup>T</sup></i> and <math> <mrow><msubsup><mi>ϕ</mi> <mi>F</mi> <mi>T</mi></msubsup> </mrow> </math> in more concentrated solutions usually differ from the real parameters <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ</i> and <i>ϕ<sub>F</sub></i> , due to the effects of self-absorption and secondary fluorescence. The technical parameters also depend on the optical geometry and the excitation wavelength. The problems of determining the real parameters from the observed, and the molecular parameters from the real, will be discussed. Methods are available for the accurate determination of <math> <mrow><msup><mi>F</mi> <mi>T</mi></msup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> and <i>τ<sup>T</sup></i> . The usual method of determining <math> <mrow><msubsup><mi>ϕ</mi> <mi>F</mi> <mi>T</mi></msubsup> </mrow> </math> involves comparison with a reference solution <i>R</i>, although a few calorimetric and other absolute determinations have been made. For two solutions excited under identical conditions and observed at normal incidence <dispformula> <math> <mrow> <mfrac> <mrow><msubsup><mi>ϕ</mi> <mi>F</mi> <mi>T</mi></msubsup> </mrow> <mrow><msubsup><mi>ϕ</mi> <mrow><mi>F</mi> <mi>R</mi></mrow> <mi>T</mi></msubsup> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow><msup><mi>n</mi> <mn>2</mn></msup> <mstyle><mrow><mo>∫</mo> <mrow><msup><mi>F</mi> <mi>T</mi></msup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> <mi>d</mi> <mover><mi>v</mi> <mo>¯</mo></mover> </mrow> </mrow> </mstyle> </mrow> <mrow><msubsup><mi>n</mi> <mi>R</mi> <mn>2</mn></msubsup> <mstyle><mrow><mo>∫</mo> <mrow><msubsup><mi>F</mi> <mi>R</mi> <mi>T</mi></msubsup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> <mi>d</mi> <mover><mi>v</mi> <mo>¯</mo></mover> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </math> </dispformula> where <i>n</i> is the solvent refractive index. Two reference solution standards have been proposed, quinine sulphate in <i>N</i> H<sub>2</sub>SO<sub>4</sub> which has no self-absorption, and 9,10-diphenylanthracene in cyclohexane which has no self-quenching. The relative merits of these solutions will be discussed, and possible candidates for an \"ideal\" fluorescence standard with no self-absorption and no self-quenching will be considered.</p>","PeriodicalId":17018,"journal":{"name":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","volume":"80A 3","pages":"389-399"},"PeriodicalIF":0.0000,"publicationDate":"1976-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluorescence Quantum Yield Measurements.\",\"authors\":\"J B Birks\",\"doi\":\"10.6028/jres.080A.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Four <i>molecular fluorescence parameters</i> describe the behaviour of a fluorescent molecule in very dilute (~ 10<sup>-6</sup> <i>M</i>) solution: the fluorescence spectrum <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> ;the fluorescence polarization <i>P<sub>M</sub></i> ;the radiative transition probability <i>k<sub>FM</sub></i> ; andthe radiationless transition probability <i>k<sub>IM</sub></i> .These parameters and their temperature and solvent dependence are those of primary interest to the photophysicist and photochemist. <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> and <i>P<sub>M</sub></i> can be determined directly, but <i>k<sub>FM</sub></i> and <i>k<sub>IM</sub></i> can only be found indirectly from measurements of the secondary parameters,the fluorescence lifetime <i>τ<sub>M</sub></i> , andthe fluorescence quantum efficiency <i>q<sub>FM</sub></i> ,where <i>k<sub>FM</sub></i> =<i>q<sub>FM</sub>/τ<sub>M</sub></i> and <i>k<sub>IM</sub></i> =(1-<i>q<sub>FM</sub></i> ) <i>τ<sub>M</sub>.</i> The <i>real fluorescence parameters</i> <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ</i> and <i>ϕ<sub>F</sub></i> of more concentrated (<i>c</i> > 10<sup>-5</sup> <i>M</i>) solutions usually differ from the molecular parameters <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ<sub>M</sub></i> and <i>q<sub>FM</sub></i> due to concentration (self) quenching, so that <i>τ</i> > <i>τ<sub>M</sub></i> and <i>ϕ<sub>F</sub></i> < <i>q<sub>FM</sub>.</i> The concentration quenching is due to excimer formation and dissociation (rates <i>k<sub>DM</sub>c</i> and <i>k<sub>MD</sub></i> , respectively) and it is often accompanied by the appearance of an excimer fluorescence spectrum <math> <mrow><msub><mi>F</mi> <mi>D</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> in addition to <math> <mrow><msub><mi>F</mi> <mi>M</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , so that <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> has two components. The <i>excimer fluorescence parameters</i> <math> <mrow><msub><mi>F</mi> <mi>D</mi></msub> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>P<sub>D</sub></i> , <i>k<sub>FD</sub></i> and <i>k<sub>ID</sub></i> together with <i>k<sub>DM</sub></i> and <i>k<sub>MD</sub></i> , and their solvent and temperature dependence, are also of primary scientific interest. The <i>observed</i> (technical) <i>fluorescence parameters</i> <math> <mrow><msup><mi>F</mi> <mi>T</mi></msup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ<sup>T</sup></i> and <math> <mrow><msubsup><mi>ϕ</mi> <mi>F</mi> <mi>T</mi></msubsup> </mrow> </math> in more concentrated solutions usually differ from the real parameters <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> , <i>τ</i> and <i>ϕ<sub>F</sub></i> , due to the effects of self-absorption and secondary fluorescence. The technical parameters also depend on the optical geometry and the excitation wavelength. The problems of determining the real parameters from the observed, and the molecular parameters from the real, will be discussed. Methods are available for the accurate determination of <math> <mrow><msup><mi>F</mi> <mi>T</mi></msup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> </mrow> </math> and <i>τ<sup>T</sup></i> . The usual method of determining <math> <mrow><msubsup><mi>ϕ</mi> <mi>F</mi> <mi>T</mi></msubsup> </mrow> </math> involves comparison with a reference solution <i>R</i>, although a few calorimetric and other absolute determinations have been made. For two solutions excited under identical conditions and observed at normal incidence <dispformula> <math> <mrow> <mfrac> <mrow><msubsup><mi>ϕ</mi> <mi>F</mi> <mi>T</mi></msubsup> </mrow> <mrow><msubsup><mi>ϕ</mi> <mrow><mi>F</mi> <mi>R</mi></mrow> <mi>T</mi></msubsup> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow><msup><mi>n</mi> <mn>2</mn></msup> <mstyle><mrow><mo>∫</mo> <mrow><msup><mi>F</mi> <mi>T</mi></msup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> <mi>d</mi> <mover><mi>v</mi> <mo>¯</mo></mover> </mrow> </mrow> </mstyle> </mrow> <mrow><msubsup><mi>n</mi> <mi>R</mi> <mn>2</mn></msubsup> <mstyle><mrow><mo>∫</mo> <mrow><msubsup><mi>F</mi> <mi>R</mi> <mi>T</mi></msubsup> <mrow><mo>(</mo> <mover><mi>v</mi> <mo>¯</mo></mover> <mo>)</mo></mrow> <mi>d</mi> <mover><mi>v</mi> <mo>¯</mo></mover> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </math> </dispformula> where <i>n</i> is the solvent refractive index. Two reference solution standards have been proposed, quinine sulphate in <i>N</i> H<sub>2</sub>SO<sub>4</sub> which has no self-absorption, and 9,10-diphenylanthracene in cyclohexane which has no self-quenching. The relative merits of these solutions will be discussed, and possible candidates for an \\\"ideal\\\" fluorescence standard with no self-absorption and no self-quenching will be considered.</p>\",\"PeriodicalId\":17018,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"volume\":\"80A 3\",\"pages\":\"389-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.080A.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"1976/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.080A.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"1976/6/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
四个分子荧光参数描述了荧光分子在极稀释(约 10-6 M)溶液中的行为:荧光光谱 F M ( v ¯ ) ;荧光偏振 PM ;辐射转变概率 kFM ;以及无辐射转变概率 kIM。 这些参数及其与温度和溶剂的关系是光物理学家和光化学家最感兴趣的参数。 F M ( v ¯ ) 和 PM 可以直接确定,但 kFM 和 kIM 只能通过测量次要参数,即荧光寿命 τM 和荧光量子效率 qFM 间接得出,其中 kFM =qFM/τM 和 kIM =(1-qFM ) τM。高浓度(c > 10-5 M)溶液的实际荧光参数 F ( v ¯ ) 、τ 和 ϕF 通常与分子参数 F M ( v ¯ ) 、τM 和 qFM 不同,这是由于浓度(自)淬火的缘故,因此 τ > τM,ϕF < qFM。浓度淬灭是由于准分子的形成和解离(速率分别为 kDMc 和 kMD),除了 F M ( v ¯ ) 外,通常还伴随着准分子荧光光谱 F D ( v ¯ ) 的出现,因此 F ( v ¯ ) 有两个分量。准分子荧光参数 F D ( v ¯ ) 、PD、kFD 和 kID 以及 kDM 和 kMD 及其与溶剂和温度的关系也是科学界关注的焦点。由于自吸收和二次荧光的影响,在较浓溶液中观察到的(技术)荧光参数 F T ( v ¯ ) 、τT 和 ϕ F T 通常与实际参数 F ( v ¯ ) 、τ 和 ϕ F 不同。技术参数还取决于光学几何形状和激发波长。将讨论从观测参数确定实际参数和从实际参数确定分子参数的问题。F T ( v ¯ ) 和 τT 的精确测定方法是可用的。测定 ϕ F T 的通常方法是与参考溶液 R 进行比较,不过也有一些热量测定法和其他绝对测定法。对于在相同条件下激发并在正常入射下观察到的两种溶液,ϕ F T ϕ F R T = n 2 ∫ F T ( v ¯ ) d v ¯ n R 2 ∫ F R T ( v ¯ ) d v ¯ 其中 n 是溶剂折射率。我们提出了两种参考溶液标准,一种是 N H2SO4 中的硫酸奎宁(无自吸收),另一种是环己烷中的 9,10-二苯基蒽(无自淬)。将讨论这些溶液的相对优点,并考虑无自吸收、无自淬的 "理想 "荧光标准的可能候选方案。
Four molecular fluorescence parameters describe the behaviour of a fluorescent molecule in very dilute (~ 10-6M) solution: the fluorescence spectrum ;the fluorescence polarization PM ;the radiative transition probability kFM ; andthe radiationless transition probability kIM .These parameters and their temperature and solvent dependence are those of primary interest to the photophysicist and photochemist. and PM can be determined directly, but kFM and kIM can only be found indirectly from measurements of the secondary parameters,the fluorescence lifetime τM , andthe fluorescence quantum efficiency qFM ,where kFM =qFM/τM and kIM =(1-qFM ) τM. The real fluorescence parameters , τ and ϕF of more concentrated (c > 10-5M) solutions usually differ from the molecular parameters , τM and qFM due to concentration (self) quenching, so that τ > τM and ϕF < qFM. The concentration quenching is due to excimer formation and dissociation (rates kDMc and kMD , respectively) and it is often accompanied by the appearance of an excimer fluorescence spectrum in addition to , so that has two components. The excimer fluorescence parameters , PD , kFD and kID together with kDM and kMD , and their solvent and temperature dependence, are also of primary scientific interest. The observed (technical) fluorescence parameters , τT and in more concentrated solutions usually differ from the real parameters , τ and ϕF , due to the effects of self-absorption and secondary fluorescence. The technical parameters also depend on the optical geometry and the excitation wavelength. The problems of determining the real parameters from the observed, and the molecular parameters from the real, will be discussed. Methods are available for the accurate determination of and τT . The usual method of determining involves comparison with a reference solution R, although a few calorimetric and other absolute determinations have been made. For two solutions excited under identical conditions and observed at normal incidence where n is the solvent refractive index. Two reference solution standards have been proposed, quinine sulphate in N H2SO4 which has no self-absorption, and 9,10-diphenylanthracene in cyclohexane which has no self-quenching. The relative merits of these solutions will be discussed, and possible candidates for an "ideal" fluorescence standard with no self-absorption and no self-quenching will be considered.