{"title":"水在三相点时的蒸气压。","authors":"L A Guildner, D P Johnson, F E Jones","doi":"10.6028/jres.080A.054","DOIUrl":null,"url":null,"abstract":"<p><p>The vapor pressure of water at its triple point was measured with exceptionally high accuracy by realizing it with a special apparatus and measuring the pressure with the NBS precision mercury manometer. The vapor pressure apparatus had a system for circulating the liquid water. Actual triple point conditions were established with a thin sheet of freshly distilled liquid flowing down over an exposed mantle of ice frozen on a vertical well. This technique reduced non-volatile contaminants and the vapor was repeatedly pumped to remove accumulated volatile contaminants. A diaphragm pressure transducer was used to separate the water vapor from the helium used to transmit the pressure to the manometer. The value found for the vapor pressure of water at its triple point was 611.657 Pa with an uncertainty of ± 0.010 Pa from random errors, computed at 99 percent confidence limits. The systematic errors are estimated to be insignificant relative to the random errors.</p>","PeriodicalId":17018,"journal":{"name":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","volume":"80A 3","pages":"505-521"},"PeriodicalIF":0.0000,"publicationDate":"1976-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vapor Pressure of Water at Its Triple Point.\",\"authors\":\"L A Guildner, D P Johnson, F E Jones\",\"doi\":\"10.6028/jres.080A.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vapor pressure of water at its triple point was measured with exceptionally high accuracy by realizing it with a special apparatus and measuring the pressure with the NBS precision mercury manometer. The vapor pressure apparatus had a system for circulating the liquid water. Actual triple point conditions were established with a thin sheet of freshly distilled liquid flowing down over an exposed mantle of ice frozen on a vertical well. This technique reduced non-volatile contaminants and the vapor was repeatedly pumped to remove accumulated volatile contaminants. A diaphragm pressure transducer was used to separate the water vapor from the helium used to transmit the pressure to the manometer. The value found for the vapor pressure of water at its triple point was 611.657 Pa with an uncertainty of ± 0.010 Pa from random errors, computed at 99 percent confidence limits. The systematic errors are estimated to be insignificant relative to the random errors.</p>\",\"PeriodicalId\":17018,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"volume\":\"80A 3\",\"pages\":\"505-521\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.080A.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"1976/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.080A.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"1976/6/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The vapor pressure of water at its triple point was measured with exceptionally high accuracy by realizing it with a special apparatus and measuring the pressure with the NBS precision mercury manometer. The vapor pressure apparatus had a system for circulating the liquid water. Actual triple point conditions were established with a thin sheet of freshly distilled liquid flowing down over an exposed mantle of ice frozen on a vertical well. This technique reduced non-volatile contaminants and the vapor was repeatedly pumped to remove accumulated volatile contaminants. A diaphragm pressure transducer was used to separate the water vapor from the helium used to transmit the pressure to the manometer. The value found for the vapor pressure of water at its triple point was 611.657 Pa with an uncertainty of ± 0.010 Pa from random errors, computed at 99 percent confidence limits. The systematic errors are estimated to be insignificant relative to the random errors.