{"title":"蝴蝶眼斑颜色图案的形成需要蛹翅上皮细胞与细胞外物质的物理接触,以传播形态发生信号。","authors":"Joji M Otaki","doi":"10.1186/s12861-020-00211-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya.</p><p><strong>Results: </strong>Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper.</p><p><strong>Conclusions: </strong>These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation.\",\"authors\":\"Joji M Otaki\",\"doi\":\"10.1186/s12861-020-00211-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya.</p><p><strong>Results: </strong>Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper.</p><p><strong>Conclusions: </strong>These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.</p>\",\"PeriodicalId\":9130,\"journal\":{\"name\":\"BMC Developmental Biology\",\"volume\":\"20 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12861-020-00211-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12861-020-00211-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation.
Background: Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya.
Results: Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper.
Conclusions: These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.
期刊介绍:
BMC Developmental Biology is an open access, peer-reviewed journal that considers articles on the development, growth, differentiation and regeneration of multicellular organisms, including molecular, cellular, tissue, organ and whole organism research.