Nasrul Wathoni, Agus Rusdin, Keiichi Motoyama, I Made Joni, Ronny Lesmana, Muchtaridi Muchtaridi
{"title":"α-曼戈斯汀的纳米颗粒给药系统。","authors":"Nasrul Wathoni, Agus Rusdin, Keiichi Motoyama, I Made Joni, Ronny Lesmana, Muchtaridi Muchtaridi","doi":"10.2147/NSA.S243017","DOIUrl":null,"url":null,"abstract":"<p><p>α-Mangostin, a xanthone derivative from the pericarp of <i>Garcinia mangostana</i> L., has numerous bioactivities and pharmacological properties. However, α-mangostin has low aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug delivery systems have become an excellent technique to improve the physicochemical properties and effectiveness of drugs. Therefore, many efforts have been made to overcome the limitations of α-mangostin through nanoparticle formulations. Our review aimed to summarise and discuss the nanoparticle drug delivery systems for α-mangostin from published papers recorded in Scopus, PubMed and Google Scholar. We examined various types of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles, liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle modification increased α-mangostin solubility increased more than 10,000 fold. Additionally, polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistribution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery system could be a promising technique to increase the solubility, selectivity and efficacy of α-mangostin as a new drug candidate in clinical therapy.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"23-36"},"PeriodicalIF":4.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/85/nsa-13-23.PMC7132026.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle Drug Delivery Systems for α-Mangostin.\",\"authors\":\"Nasrul Wathoni, Agus Rusdin, Keiichi Motoyama, I Made Joni, Ronny Lesmana, Muchtaridi Muchtaridi\",\"doi\":\"10.2147/NSA.S243017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-Mangostin, a xanthone derivative from the pericarp of <i>Garcinia mangostana</i> L., has numerous bioactivities and pharmacological properties. However, α-mangostin has low aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug delivery systems have become an excellent technique to improve the physicochemical properties and effectiveness of drugs. Therefore, many efforts have been made to overcome the limitations of α-mangostin through nanoparticle formulations. Our review aimed to summarise and discuss the nanoparticle drug delivery systems for α-mangostin from published papers recorded in Scopus, PubMed and Google Scholar. We examined various types of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles, liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle modification increased α-mangostin solubility increased more than 10,000 fold. Additionally, polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistribution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery system could be a promising technique to increase the solubility, selectivity and efficacy of α-mangostin as a new drug candidate in clinical therapy.</p>\",\"PeriodicalId\":18881,\"journal\":{\"name\":\"Nanotechnology, Science and Applications\",\"volume\":\"13 \",\"pages\":\"23-36\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/85/nsa-13-23.PMC7132026.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology, Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/NSA.S243017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S243017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
α-芒果苷是从藤黄属植物芒果(Garcinia mangostana L.)果皮中提取的一种黄酮衍生物,具有多种生物活性和药理特性。然而,α-曼戈斯汀在人体内的水溶性低,靶向选择性差。近年来,纳米颗粒给药系统已成为改善药物理化性质和药效的绝佳技术。因此,很多人都在努力通过纳米颗粒制剂来克服α-曼戈斯汀的局限性。我们的综述旨在总结和讨论 Scopus、PubMed 和 Google Scholar 收录的已发表论文中有关α-曼戈斯汀的纳米颗粒给药系统。我们研究了各种类型的α-曼戈斯汀纳米颗粒,以提高水溶性、提供控释和创建靶向给药系统。这些形式包括聚合物纳米颗粒、纳米胶束、脂质体、固体脂质纳米颗粒、纳米纤维和纳米乳液。值得注意的是,纳米胶束的改性使α-曼戈斯汀的溶解度提高了 10,000 倍以上。此外,高分子纳米颗粒还能提供靶向递送,并显著增强α-曼戈斯汀在特定器官中的生物分布。总之,纳米颗粒给药系统是一种很有前途的技术,可提高α-曼戈斯汀作为候选新药在临床治疗中的溶解度、选择性和疗效。
Nanoparticle Drug Delivery Systems for α-Mangostin.
α-Mangostin, a xanthone derivative from the pericarp of Garcinia mangostana L., has numerous bioactivities and pharmacological properties. However, α-mangostin has low aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug delivery systems have become an excellent technique to improve the physicochemical properties and effectiveness of drugs. Therefore, many efforts have been made to overcome the limitations of α-mangostin through nanoparticle formulations. Our review aimed to summarise and discuss the nanoparticle drug delivery systems for α-mangostin from published papers recorded in Scopus, PubMed and Google Scholar. We examined various types of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles, liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle modification increased α-mangostin solubility increased more than 10,000 fold. Additionally, polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistribution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery system could be a promising technique to increase the solubility, selectivity and efficacy of α-mangostin as a new drug candidate in clinical therapy.
期刊介绍:
Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.