{"title":"用于动物病毒感染的类病毒颗粒疫苗","authors":"Elisa Crisci , Juan Bárcena , María Montoya","doi":"10.1016/j.inmuno.2012.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Vaccination is considered one of the most effective ways to control pathogens and prevent diseases in humans as well as in the veterinary field. Traditional vaccines against animal viral diseases are based on inactivated or attenuated viruses, but new subunit vaccines are gaining attention from researchers in animal vaccinology. Among these, virus-like particles (VLPs) represent one of the most appealing approaches opening up interesting frontiers in animal vaccines. VLPs are robust protein scaffolds exhibiting well-defined geometry and uniformity that mimic the overall structure of the native virions but lack the viral genome. They are often antigenically indistinguishable from the virus from which they were derived and present important advantages in terms of safety. VLPs can stimulate strong humoral and cellular immune responses and have been shown to exhibit self-adjuvanting abilities. In addition to their suitability as a vaccine for the homologous virus from which they are derived, VLPs can also be used as vectors for the multimeric presentation of foreign antigens. VLPs have therefore shown dramatic effectiveness as candidate vaccines; nevertheless, only one veterinary VLP-base vaccine is licensed. Here, we review and examine in detail the current status of VLPs as a vaccine strategy in the veterinary field, and discuss the potential advantages and challenges of this technology.</p></div>","PeriodicalId":88896,"journal":{"name":"Inmunologia (Barcelona, Spain : 1987)","volume":"32 3","pages":"Pages 102-116"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inmuno.2012.08.002","citationCount":"14","resultStr":"{\"title\":\"Virus-like particle-based vaccines for animal viral infections\",\"authors\":\"Elisa Crisci , Juan Bárcena , María Montoya\",\"doi\":\"10.1016/j.inmuno.2012.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vaccination is considered one of the most effective ways to control pathogens and prevent diseases in humans as well as in the veterinary field. Traditional vaccines against animal viral diseases are based on inactivated or attenuated viruses, but new subunit vaccines are gaining attention from researchers in animal vaccinology. Among these, virus-like particles (VLPs) represent one of the most appealing approaches opening up interesting frontiers in animal vaccines. VLPs are robust protein scaffolds exhibiting well-defined geometry and uniformity that mimic the overall structure of the native virions but lack the viral genome. They are often antigenically indistinguishable from the virus from which they were derived and present important advantages in terms of safety. VLPs can stimulate strong humoral and cellular immune responses and have been shown to exhibit self-adjuvanting abilities. In addition to their suitability as a vaccine for the homologous virus from which they are derived, VLPs can also be used as vectors for the multimeric presentation of foreign antigens. VLPs have therefore shown dramatic effectiveness as candidate vaccines; nevertheless, only one veterinary VLP-base vaccine is licensed. Here, we review and examine in detail the current status of VLPs as a vaccine strategy in the veterinary field, and discuss the potential advantages and challenges of this technology.</p></div>\",\"PeriodicalId\":88896,\"journal\":{\"name\":\"Inmunologia (Barcelona, Spain : 1987)\",\"volume\":\"32 3\",\"pages\":\"Pages 102-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.inmuno.2012.08.002\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inmunologia (Barcelona, Spain : 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S021396261200087X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inmunologia (Barcelona, Spain : 1987)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S021396261200087X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virus-like particle-based vaccines for animal viral infections
Vaccination is considered one of the most effective ways to control pathogens and prevent diseases in humans as well as in the veterinary field. Traditional vaccines against animal viral diseases are based on inactivated or attenuated viruses, but new subunit vaccines are gaining attention from researchers in animal vaccinology. Among these, virus-like particles (VLPs) represent one of the most appealing approaches opening up interesting frontiers in animal vaccines. VLPs are robust protein scaffolds exhibiting well-defined geometry and uniformity that mimic the overall structure of the native virions but lack the viral genome. They are often antigenically indistinguishable from the virus from which they were derived and present important advantages in terms of safety. VLPs can stimulate strong humoral and cellular immune responses and have been shown to exhibit self-adjuvanting abilities. In addition to their suitability as a vaccine for the homologous virus from which they are derived, VLPs can also be used as vectors for the multimeric presentation of foreign antigens. VLPs have therefore shown dramatic effectiveness as candidate vaccines; nevertheless, only one veterinary VLP-base vaccine is licensed. Here, we review and examine in detail the current status of VLPs as a vaccine strategy in the veterinary field, and discuss the potential advantages and challenges of this technology.