聚磷腈聚合物:用于再生工程和治疗药物输送的下一代生物材料。

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics Pub Date : 2020-05-01 Epub Date: 2020-04-09 DOI:10.1116/6.0000055
Kenneth S Ogueri, Kennedy S Ogueri, Harry R Allcock, Cato T Laurencin
{"title":"聚磷腈聚合物:用于再生工程和治疗药物输送的下一代生物材料。","authors":"Kenneth S Ogueri, Kennedy S Ogueri, Harry R Allcock, Cato T Laurencin","doi":"10.1116/6.0000055","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for new biomaterials in several biomedical applications, such as regenerative engineering and drug delivery, has increased over the past two decades due to emerging technological advances in biomedicine. Degradable polymeric biomaterials continue to play a significant role as scaffolding materials and drug devices. Polyphosphazene platform is a subject of broad interest, as it presents an avenue for attaining versatile polymeric materials with excellent structure and property tunability, and high functional diversity. Macromolecular substitution enables the facile attachment of different organic groups and drug molecules to the polyphosphazene backbone for the development of a broad class of materials. These materials are more biocompatible than traditional biomaterials, mixable with other clinically relevant polymers to obtain new materials and exhibit unique erosion with near-neutral degradation products. Hence, polyphosphazene represents the next generation of biomaterials. In this review, the authors systematically discuss the synthetic design, structure-property relationships, and the promising potentials of polyphosphazenes in regenerative engineering and drug delivery.</p>","PeriodicalId":38110,"journal":{"name":"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156271/pdf/JVTBD9-000038-030801_1.pdf","citationCount":"0","resultStr":"{\"title\":\"Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery.\",\"authors\":\"Kenneth S Ogueri, Kennedy S Ogueri, Harry R Allcock, Cato T Laurencin\",\"doi\":\"10.1116/6.0000055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for new biomaterials in several biomedical applications, such as regenerative engineering and drug delivery, has increased over the past two decades due to emerging technological advances in biomedicine. Degradable polymeric biomaterials continue to play a significant role as scaffolding materials and drug devices. Polyphosphazene platform is a subject of broad interest, as it presents an avenue for attaining versatile polymeric materials with excellent structure and property tunability, and high functional diversity. Macromolecular substitution enables the facile attachment of different organic groups and drug molecules to the polyphosphazene backbone for the development of a broad class of materials. These materials are more biocompatible than traditional biomaterials, mixable with other clinically relevant polymers to obtain new materials and exhibit unique erosion with near-neutral degradation products. Hence, polyphosphazene represents the next generation of biomaterials. In this review, the authors systematically discuss the synthetic design, structure-property relationships, and the promising potentials of polyphosphazenes in regenerative engineering and drug delivery.</p>\",\"PeriodicalId\":38110,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156271/pdf/JVTBD9-000038-030801_1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0000055\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0000055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,由于生物医学技术的不断进步,对再生工程和药物输送等几种生物医学应用中的新生物材料的需求有所增加。可降解高分子生物材料作为支架材料和药物装置继续发挥着重要的作用。聚磷腈平台是一个广泛关注的主题,因为它为获得具有优异结构和性能可调性以及高功能多样性的多功能聚合物材料提供了一条途径。大分子取代使得不同的有机基团和药物分子可以很容易地附着在聚磷腈骨架上,从而开发出种类繁多的材料。这些材料比传统的生物材料更具生物相容性,可与其他临床相关的聚合物混合以获得新材料,并具有接近中性降解产物的独特侵蚀。因此,聚磷腈代表了下一代生物材料。本文综述了聚磷腈的合成设计、结构-性能关系及其在再生工程和给药领域的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery.

The demand for new biomaterials in several biomedical applications, such as regenerative engineering and drug delivery, has increased over the past two decades due to emerging technological advances in biomedicine. Degradable polymeric biomaterials continue to play a significant role as scaffolding materials and drug devices. Polyphosphazene platform is a subject of broad interest, as it presents an avenue for attaining versatile polymeric materials with excellent structure and property tunability, and high functional diversity. Macromolecular substitution enables the facile attachment of different organic groups and drug molecules to the polyphosphazene backbone for the development of a broad class of materials. These materials are more biocompatible than traditional biomaterials, mixable with other clinically relevant polymers to obtain new materials and exhibit unique erosion with near-neutral degradation products. Hence, polyphosphazene represents the next generation of biomaterials. In this review, the authors systematically discuss the synthetic design, structure-property relationships, and the promising potentials of polyphosphazenes in regenerative engineering and drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
146
期刊最新文献
High sensitivity saliva-based biosensor in detection of breast cancer biomarkers: HER2 and CA15-3. Optical and electronic spin properties of fluorescent micro- and nanodiamonds upon prolonged ultrahigh-temperature annealing. High sensitivity CIP2A detection for oral cancer using a rapid transistor-based biosensor module. Digital biosensor for human cerebrospinal fluid detection with single-use sensing strips. Rapid SARS-CoV-2 diagnosis using disposable strips and a metal-oxide-semiconductor field-effect transistor platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1