SketchyCoreSVD:从数据矩阵的随机子采样的SketchySVD。

Chandrajit Bajaj, Yi Wang, Tianming Wang
{"title":"SketchyCoreSVD:从数据矩阵的随机子采样的SketchySVD。","authors":"Chandrajit Bajaj,&nbsp;Yi Wang,&nbsp;Tianming Wang","doi":"10.1109/bigdata47090.2019.9006345","DOIUrl":null,"url":null,"abstract":"<p><p>We present a method called SketchyCoreSVD to compute the near-optimal rank <i>r</i> SVD of a data matrix by building random sketches only from its subsampled columns and rows. We provide theoretical guarantees under incoherence assumptions, and validate the performance of our SketchyCoreSVD method on various large static and time-varying datasets.</p>","PeriodicalId":91601,"journal":{"name":"Proceedings. IEEE International Congress on Big Data","volume":"2019 ","pages":"26-35"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/bigdata47090.2019.9006345","citationCount":"5","resultStr":"{\"title\":\"SketchyCoreSVD: SketchySVD from Random Subsampling of the Data Matrix.\",\"authors\":\"Chandrajit Bajaj,&nbsp;Yi Wang,&nbsp;Tianming Wang\",\"doi\":\"10.1109/bigdata47090.2019.9006345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a method called SketchyCoreSVD to compute the near-optimal rank <i>r</i> SVD of a data matrix by building random sketches only from its subsampled columns and rows. We provide theoretical guarantees under incoherence assumptions, and validate the performance of our SketchyCoreSVD method on various large static and time-varying datasets.</p>\",\"PeriodicalId\":91601,\"journal\":{\"name\":\"Proceedings. IEEE International Congress on Big Data\",\"volume\":\"2019 \",\"pages\":\"26-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/bigdata47090.2019.9006345\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Congress on Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/bigdata47090.2019.9006345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Congress on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bigdata47090.2019.9006345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种称为SketchyCoreSVD的方法,通过仅从其子采样的列和行构建随机草图来计算数据矩阵的近最优秩r SVD。我们在非相干假设下提供了理论保证,并在各种大型静态和时变数据集上验证了我们的SketchyCoreSVD方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SketchyCoreSVD: SketchySVD from Random Subsampling of the Data Matrix.

We present a method called SketchyCoreSVD to compute the near-optimal rank r SVD of a data matrix by building random sketches only from its subsampled columns and rows. We provide theoretical guarantees under incoherence assumptions, and validate the performance of our SketchyCoreSVD method on various large static and time-varying datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SketchyCoreSVD: SketchySVD from Random Subsampling of the Data Matrix. Experiences with the Twitter Health Surveillance (THS) System. Predictive Modeling for Comfortable Death Outcome Using Electronic Health Records.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1