Cynthia Petrillo, Vilma Barroca, Jonathan Ribeiro, Nathalie Lailler, Gabriel Livera, Scott Keeney, Emmanuelle Martini, Devanshi Jain
{"title":"小鼠shani突变影响Spata22剪接,导致减数分裂重组受损。","authors":"Cynthia Petrillo, Vilma Barroca, Jonathan Ribeiro, Nathalie Lailler, Gabriel Livera, Scott Keeney, Emmanuelle Martini, Devanshi Jain","doi":"10.1007/s00412-020-00735-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recombination is crucial for chromosome pairing and segregation during meiosis. SPATA22, along with its direct binding partner and functional collaborator, MEIOB, is essential for the proper repair of double-strand breaks (DSBs) during meiotic recombination. Here, we describe a novel point-mutated allele (shani) of mouse Spata22 that we isolated in a forward genetic screen. shani mutant mice phenocopy Spata22-null and Meiob-null mice: mutant cells appear to form DSBs and initiate meiotic recombination, but are unable to complete DSB repair, leading to meiotic prophase arrest, apoptosis and sterility. shani mutants show precocious loss of DMC1 foci and improper accumulation of BLM-positive recombination foci, reinforcing the requirement of SPATA22-MEIOB for the proper progression of meiotic recombination events. The shani mutation lies within a Spata22 coding exon and molecular characterization shows that it leads to incorrect splicing of the Spata22 mRNA, ultimately resulting in no detectable SPATA22 protein. We propose that the shani mutation alters an exonic splicing enhancer element (ESE) within the Spata22 transcript. The affected DNA nucleotide is conserved in most tetrapods examined, suggesting that the splicing regulation we describe here may be a conserved feature of Spata22 regulation.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00412-020-00735-8","citationCount":"5","resultStr":"{\"title\":\"shani mutation in mouse affects splicing of Spata22 and leads to impaired meiotic recombination.\",\"authors\":\"Cynthia Petrillo, Vilma Barroca, Jonathan Ribeiro, Nathalie Lailler, Gabriel Livera, Scott Keeney, Emmanuelle Martini, Devanshi Jain\",\"doi\":\"10.1007/s00412-020-00735-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombination is crucial for chromosome pairing and segregation during meiosis. SPATA22, along with its direct binding partner and functional collaborator, MEIOB, is essential for the proper repair of double-strand breaks (DSBs) during meiotic recombination. Here, we describe a novel point-mutated allele (shani) of mouse Spata22 that we isolated in a forward genetic screen. shani mutant mice phenocopy Spata22-null and Meiob-null mice: mutant cells appear to form DSBs and initiate meiotic recombination, but are unable to complete DSB repair, leading to meiotic prophase arrest, apoptosis and sterility. shani mutants show precocious loss of DMC1 foci and improper accumulation of BLM-positive recombination foci, reinforcing the requirement of SPATA22-MEIOB for the proper progression of meiotic recombination events. The shani mutation lies within a Spata22 coding exon and molecular characterization shows that it leads to incorrect splicing of the Spata22 mRNA, ultimately resulting in no detectable SPATA22 protein. We propose that the shani mutation alters an exonic splicing enhancer element (ESE) within the Spata22 transcript. The affected DNA nucleotide is conserved in most tetrapods examined, suggesting that the splicing regulation we describe here may be a conserved feature of Spata22 regulation.</p>\",\"PeriodicalId\":10248,\"journal\":{\"name\":\"Chromosoma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00412-020-00735-8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosoma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00412-020-00735-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosoma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00412-020-00735-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
shani mutation in mouse affects splicing of Spata22 and leads to impaired meiotic recombination.
Recombination is crucial for chromosome pairing and segregation during meiosis. SPATA22, along with its direct binding partner and functional collaborator, MEIOB, is essential for the proper repair of double-strand breaks (DSBs) during meiotic recombination. Here, we describe a novel point-mutated allele (shani) of mouse Spata22 that we isolated in a forward genetic screen. shani mutant mice phenocopy Spata22-null and Meiob-null mice: mutant cells appear to form DSBs and initiate meiotic recombination, but are unable to complete DSB repair, leading to meiotic prophase arrest, apoptosis and sterility. shani mutants show precocious loss of DMC1 foci and improper accumulation of BLM-positive recombination foci, reinforcing the requirement of SPATA22-MEIOB for the proper progression of meiotic recombination events. The shani mutation lies within a Spata22 coding exon and molecular characterization shows that it leads to incorrect splicing of the Spata22 mRNA, ultimately resulting in no detectable SPATA22 protein. We propose that the shani mutation alters an exonic splicing enhancer element (ESE) within the Spata22 transcript. The affected DNA nucleotide is conserved in most tetrapods examined, suggesting that the splicing regulation we describe here may be a conserved feature of Spata22 regulation.
期刊介绍:
Chromosoma publishes research and review articles on the functional organization of the eukaryotic cell nucleus, with a particular emphasis on the structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis; the function and dynamics of subnuclear compartments; the nuclear envelope and nucleocytoplasmic interactions, and more.
The scope of Chromosoma encompasses genetic, biophysical, molecular and cell biological studies.
Average time from receipt of contributions to first decision: 22 days
Publishes research and review articles on the functional organization of the eukaryotic cell nucleus
Topics include structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis and more
Encompasses genetic, biophysical, molecular and cell biological studies.