{"title":"潜伏感染HIV的t细胞的细胞大小依赖性迁移。","authors":"Kathrin Bohn-Wippert, Roy D Dar","doi":"10.36069/JoLS/20200301","DOIUrl":null,"url":null,"abstract":"<p><p>Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.</p>","PeriodicalId":87302,"journal":{"name":"Journal of life sciences (Westlake Village, Calif.)","volume":"2 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250449/pdf/nihms-1581275.pdf","citationCount":"0","resultStr":"{\"title\":\"Cell size dependent migration of T-cells latently infected with HIV.\",\"authors\":\"Kathrin Bohn-Wippert, Roy D Dar\",\"doi\":\"10.36069/JoLS/20200301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.</p>\",\"PeriodicalId\":87302,\"journal\":{\"name\":\"Journal of life sciences (Westlake Village, Calif.)\",\"volume\":\"2 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250449/pdf/nihms-1581275.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of life sciences (Westlake Village, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36069/JoLS/20200301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of life sciences (Westlake Village, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36069/JoLS/20200301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell size dependent migration of T-cells latently infected with HIV.
Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.