基于卷积神经网络的超声横波弹性成像乳腺肿块分类。

IF 2.5 4区 医学 Q1 ACOUSTICS Ultrasonic Imaging Pub Date : 2020-07-01 Epub Date: 2020-06-05 DOI:10.1177/0161734620932609
Tomoyuki Fujioka, Leona Katsuta, Kazunori Kubota, Mio Mori, Yuka Kikuchi, Arisa Kato, Goshi Oda, Tsuyoshi Nakagawa, Yoshio Kitazume, Ukihide Tateishi
{"title":"基于卷积神经网络的超声横波弹性成像乳腺肿块分类。","authors":"Tomoyuki Fujioka,&nbsp;Leona Katsuta,&nbsp;Kazunori Kubota,&nbsp;Mio Mori,&nbsp;Yuka Kikuchi,&nbsp;Arisa Kato,&nbsp;Goshi Oda,&nbsp;Tsuyoshi Nakagawa,&nbsp;Yoshio Kitazume,&nbsp;Ukihide Tateishi","doi":"10.1177/0161734620932609","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to use deep learning with convolutional neural networks (CNNs) to discriminate images of benign and malignant breast masses on ultrasound shear wave elastography (SWE). We retrospectively gathered 158 images of benign masses and 146 images of malignant masses as training data for SWE. A deep learning model was constructed using several CNN architectures (Xception, InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169, and NASNetMobile) with 50, 100, and 200 epochs. We analyzed SWE images of 38 benign masses and 35 malignant masses as test data. Two radiologists interpreted these test data through a consensus reading using a 5-point visual color assessment (SWEc) and the mean elasticity value (in kPa) (SWEe). Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated. The best CNN model (which was DenseNet169 with 100 epochs), SWEc, and SWEe had a sensitivity of 0.857, 0.829, and 0.914 and a specificity of 0.789, 0.737, and 0.763 respectively. The CNNs exhibited a mean AUC of 0.870 (range, 0.844-0.898), and SWEc and SWEe had an AUC of 0.821 and 0.855. The CNNs had an equal or better diagnostic performance compared with radiologist readings. DenseNet169 with 100 epochs, Xception with 50 epochs, and Xception with 100 epochs had a better diagnostic performance compared with SWEc (<i>P</i> = 0.018-0.037). Deep learning with CNNs exhibited equal or higher AUC compared with radiologists when discriminating benign from malignant breast masses on ultrasound SWE.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0161734620932609","citationCount":"32","resultStr":"{\"title\":\"Classification of Breast Masses on Ultrasound Shear Wave Elastography using Convolutional Neural Networks.\",\"authors\":\"Tomoyuki Fujioka,&nbsp;Leona Katsuta,&nbsp;Kazunori Kubota,&nbsp;Mio Mori,&nbsp;Yuka Kikuchi,&nbsp;Arisa Kato,&nbsp;Goshi Oda,&nbsp;Tsuyoshi Nakagawa,&nbsp;Yoshio Kitazume,&nbsp;Ukihide Tateishi\",\"doi\":\"10.1177/0161734620932609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to use deep learning with convolutional neural networks (CNNs) to discriminate images of benign and malignant breast masses on ultrasound shear wave elastography (SWE). We retrospectively gathered 158 images of benign masses and 146 images of malignant masses as training data for SWE. A deep learning model was constructed using several CNN architectures (Xception, InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169, and NASNetMobile) with 50, 100, and 200 epochs. We analyzed SWE images of 38 benign masses and 35 malignant masses as test data. Two radiologists interpreted these test data through a consensus reading using a 5-point visual color assessment (SWEc) and the mean elasticity value (in kPa) (SWEe). Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated. The best CNN model (which was DenseNet169 with 100 epochs), SWEc, and SWEe had a sensitivity of 0.857, 0.829, and 0.914 and a specificity of 0.789, 0.737, and 0.763 respectively. The CNNs exhibited a mean AUC of 0.870 (range, 0.844-0.898), and SWEc and SWEe had an AUC of 0.821 and 0.855. The CNNs had an equal or better diagnostic performance compared with radiologist readings. DenseNet169 with 100 epochs, Xception with 50 epochs, and Xception with 100 epochs had a better diagnostic performance compared with SWEc (<i>P</i> = 0.018-0.037). Deep learning with CNNs exhibited equal or higher AUC compared with radiologists when discriminating benign from malignant breast masses on ultrasound SWE.</p>\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0161734620932609\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0161734620932609\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0161734620932609","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 32

摘要

我们的目标是使用卷积神经网络(cnn)的深度学习来区分超声剪切波弹性成像(SWE)上的良性和恶性乳房肿块图像。我们回顾性地收集了158张良性肿块图像和146张恶性肿块图像作为SWE的训练数据。使用多个CNN架构(Xception、InceptionV3、InceptionResNetV2、DenseNet121、DenseNet169和NASNetMobile)构建深度学习模型,分别具有50、100和200个epoch。我们分析了38例良性肿块和35例恶性肿块的SWE图像作为测试数据。两名放射科医生通过使用5点视觉颜色评估(SWEc)和平均弹性值(kPa) (SWEe)的共识读数来解释这些测试数据。计算灵敏度、特异性和受试者工作特征曲线下面积(AUC)。最佳CNN模型(100 epoch的DenseNet169)、SWEc和SWEe的灵敏度分别为0.857、0.829和0.914,特异性分别为0.789、0.737和0.763。cnn的平均AUC为0.870(范围0.844-0.898),swc和SWEe的AUC分别为0.821和0.855。与放射科医生的读数相比,cnn具有相同或更好的诊断性能。DenseNet169 100次、Xception 50次、Xception 100次的诊断效果优于SWEc (P = 0.018-0.037)。与放射科医师相比,cnn深度学习在超声SWE上鉴别乳腺肿块良恶性时AUC相等或更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Breast Masses on Ultrasound Shear Wave Elastography using Convolutional Neural Networks.

We aimed to use deep learning with convolutional neural networks (CNNs) to discriminate images of benign and malignant breast masses on ultrasound shear wave elastography (SWE). We retrospectively gathered 158 images of benign masses and 146 images of malignant masses as training data for SWE. A deep learning model was constructed using several CNN architectures (Xception, InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169, and NASNetMobile) with 50, 100, and 200 epochs. We analyzed SWE images of 38 benign masses and 35 malignant masses as test data. Two radiologists interpreted these test data through a consensus reading using a 5-point visual color assessment (SWEc) and the mean elasticity value (in kPa) (SWEe). Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated. The best CNN model (which was DenseNet169 with 100 epochs), SWEc, and SWEe had a sensitivity of 0.857, 0.829, and 0.914 and a specificity of 0.789, 0.737, and 0.763 respectively. The CNNs exhibited a mean AUC of 0.870 (range, 0.844-0.898), and SWEc and SWEe had an AUC of 0.821 and 0.855. The CNNs had an equal or better diagnostic performance compared with radiologist readings. DenseNet169 with 100 epochs, Xception with 50 epochs, and Xception with 100 epochs had a better diagnostic performance compared with SWEc (P = 0.018-0.037). Deep learning with CNNs exhibited equal or higher AUC compared with radiologists when discriminating benign from malignant breast masses on ultrasound SWE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
期刊最新文献
Image Features and Diagnostic Value of Contrast-Enhanced Ultrasound for Ductal Carcinoma In Situ of the Breast: Preliminary Findings. Ultrasonic Imaging of Deeper Bone Defect Using Virtual Source Synthetic Aperture with Phased Shift Migration: A Phantom Study. Predictive Value of the Nomogram Model Based on Multimodal Ultrasound Features for Benign and Malignant Thyroid Nodules of C-TIRADS Category 4. High Frequency Ultrasound Transducer Based on Sm-Doped Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Ceramic for Intravascular Ultrasound Imaging. Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1