George Kotsaris, Despoina Kerselidou, Dimitrios Koutsoubaris, Elena Constantinou, George Malamas, Dimitrios A Garyfallos, Eudoxia G Ηatzivassiliou
{"title":"TRAF3可与GMEB1相互作用,调节其抗凋亡功能。","authors":"George Kotsaris, Despoina Kerselidou, Dimitrios Koutsoubaris, Elena Constantinou, George Malamas, Dimitrios A Garyfallos, Eudoxia G Ηatzivassiliou","doi":"10.1186/s40709-020-00117-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Members of Tumor Necrosis Factor (TNF) Receptor-Associated Factors (TRAFs) family interact with the cytoplasmic tails of TNF receptor family members to mediate signal transduction processes. TRAF3 has a major immunomodulatory function and TRAF3 deficiency has been linked to malignancies, such as multiple myeloma and lymphoid defects. In order to characterize the molecular mechanisms of TRAF3 signaling, the yeast two-hybrid system was used to identify proteins that interact with TRAF3.</p><p><strong>Results: </strong>The yeast two-hybrid screen of a human B cell cDNA library with TRAF3 as bait, identified Glucocorticoid Modulatory Element-Binding Protein 1 (GMEB1) as a TRAF3-interacting protein. Previous studies indicated that GMEB1 functions as a potent inhibitor of caspase activation and apoptosis. The interaction of TRAF3 and GMEB1 proteins was confirmed in mammalian cells lines, using immunoprecipitation assays. The RING and TRAF-C domains of TRAF3 were not essential for this interaction. The overexpression of TRAF3 protein enhanced the anti-apoptotic function of GMEB1 in HeLa cells. On the other hand, downregulation of TRAF3 by RNA interference decreased significantly the ability of GMEB1 to inhibit apoptosis. In addition, LMP1(1-231), a truncated form of the EBV oncoprotein LMP1, that can interact and oligomerize with TRAF3, was also able to cooperate with GMEB1, in order to inhibit apoptosis.</p><p><strong>Conclusions: </strong>Our protein-interaction experiments demonstrated that TRAF3 can interact with GMEB1, which is an inhibitor of apoptosis. In addition, cell viability assays showed that overexpression of TRAF3 enhanced the anti-apoptotic activity of GMEB1, supporting a regulatory role of TRAF3 in GMEB1-mediated inhibition of apoptosis. Better understanding of the molecular mechanism of TRAF3 function will improve diagnostics and targeted therapeutic approaches for TRAF3-associated disorders.</p>","PeriodicalId":50251,"journal":{"name":"Journal of Biological Research-Thessaloniki","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-020-00117-2","citationCount":"5","resultStr":"{\"title\":\"TRAF3 can interact with GMEB1 and modulate its anti-apoptotic function.\",\"authors\":\"George Kotsaris, Despoina Kerselidou, Dimitrios Koutsoubaris, Elena Constantinou, George Malamas, Dimitrios A Garyfallos, Eudoxia G Ηatzivassiliou\",\"doi\":\"10.1186/s40709-020-00117-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Members of Tumor Necrosis Factor (TNF) Receptor-Associated Factors (TRAFs) family interact with the cytoplasmic tails of TNF receptor family members to mediate signal transduction processes. TRAF3 has a major immunomodulatory function and TRAF3 deficiency has been linked to malignancies, such as multiple myeloma and lymphoid defects. In order to characterize the molecular mechanisms of TRAF3 signaling, the yeast two-hybrid system was used to identify proteins that interact with TRAF3.</p><p><strong>Results: </strong>The yeast two-hybrid screen of a human B cell cDNA library with TRAF3 as bait, identified Glucocorticoid Modulatory Element-Binding Protein 1 (GMEB1) as a TRAF3-interacting protein. Previous studies indicated that GMEB1 functions as a potent inhibitor of caspase activation and apoptosis. The interaction of TRAF3 and GMEB1 proteins was confirmed in mammalian cells lines, using immunoprecipitation assays. The RING and TRAF-C domains of TRAF3 were not essential for this interaction. The overexpression of TRAF3 protein enhanced the anti-apoptotic function of GMEB1 in HeLa cells. On the other hand, downregulation of TRAF3 by RNA interference decreased significantly the ability of GMEB1 to inhibit apoptosis. In addition, LMP1(1-231), a truncated form of the EBV oncoprotein LMP1, that can interact and oligomerize with TRAF3, was also able to cooperate with GMEB1, in order to inhibit apoptosis.</p><p><strong>Conclusions: </strong>Our protein-interaction experiments demonstrated that TRAF3 can interact with GMEB1, which is an inhibitor of apoptosis. In addition, cell viability assays showed that overexpression of TRAF3 enhanced the anti-apoptotic activity of GMEB1, supporting a regulatory role of TRAF3 in GMEB1-mediated inhibition of apoptosis. Better understanding of the molecular mechanism of TRAF3 function will improve diagnostics and targeted therapeutic approaches for TRAF3-associated disorders.</p>\",\"PeriodicalId\":50251,\"journal\":{\"name\":\"Journal of Biological Research-Thessaloniki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40709-020-00117-2\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Research-Thessaloniki\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40709-020-00117-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Thessaloniki","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-020-00117-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5
摘要
背景:肿瘤坏死因子(TNF)受体相关因子(TRAFs)家族成员与TNF受体家族成员的细胞质尾部相互作用,介导信号转导过程。TRAF3具有主要的免疫调节功能,TRAF3缺乏与恶性肿瘤有关,如多发性骨髓瘤和淋巴细胞缺陷。为了表征TRAF3信号转导的分子机制,利用酵母双杂交系统鉴定与TRAF3相互作用的蛋白。结果:以TRAF3为诱饵对人B细胞cDNA文库进行酵母双杂交筛选,鉴定出糖皮质激素调节元件结合蛋白1 (Glucocorticoid Modulatory Element-Binding Protein 1, GMEB1)为TRAF3相互作用蛋白。先前的研究表明,GMEB1是caspase激活和细胞凋亡的有效抑制剂。利用免疫沉淀法在哺乳动物细胞系中证实了TRAF3和GMEB1蛋白的相互作用。TRAF3的RING和TRAF-C结构域对于这种相互作用不是必需的。TRAF3蛋白的过表达增强了HeLa细胞中GMEB1的抗凋亡功能。另一方面,通过RNA干扰下调TRAF3显著降低GMEB1抑制细胞凋亡的能力。此外,EBV癌蛋白LMP1(1-231)的截断形式LMP1(1-231)可以与TRAF3相互作用和寡聚,也能够与GMEB1合作,从而抑制细胞凋亡。结论:我们的蛋白相互作用实验表明TRAF3可以与GMEB1相互作用,GMEB1是一种细胞凋亡抑制剂。此外,细胞活力实验显示,TRAF3过表达增强了GMEB1的抗凋亡活性,支持TRAF3在GMEB1介导的细胞凋亡抑制中的调节作用。更好地了解TRAF3功能的分子机制将改善TRAF3相关疾病的诊断和靶向治疗方法。
TRAF3 can interact with GMEB1 and modulate its anti-apoptotic function.
Background: Members of Tumor Necrosis Factor (TNF) Receptor-Associated Factors (TRAFs) family interact with the cytoplasmic tails of TNF receptor family members to mediate signal transduction processes. TRAF3 has a major immunomodulatory function and TRAF3 deficiency has been linked to malignancies, such as multiple myeloma and lymphoid defects. In order to characterize the molecular mechanisms of TRAF3 signaling, the yeast two-hybrid system was used to identify proteins that interact with TRAF3.
Results: The yeast two-hybrid screen of a human B cell cDNA library with TRAF3 as bait, identified Glucocorticoid Modulatory Element-Binding Protein 1 (GMEB1) as a TRAF3-interacting protein. Previous studies indicated that GMEB1 functions as a potent inhibitor of caspase activation and apoptosis. The interaction of TRAF3 and GMEB1 proteins was confirmed in mammalian cells lines, using immunoprecipitation assays. The RING and TRAF-C domains of TRAF3 were not essential for this interaction. The overexpression of TRAF3 protein enhanced the anti-apoptotic function of GMEB1 in HeLa cells. On the other hand, downregulation of TRAF3 by RNA interference decreased significantly the ability of GMEB1 to inhibit apoptosis. In addition, LMP1(1-231), a truncated form of the EBV oncoprotein LMP1, that can interact and oligomerize with TRAF3, was also able to cooperate with GMEB1, in order to inhibit apoptosis.
Conclusions: Our protein-interaction experiments demonstrated that TRAF3 can interact with GMEB1, which is an inhibitor of apoptosis. In addition, cell viability assays showed that overexpression of TRAF3 enhanced the anti-apoptotic activity of GMEB1, supporting a regulatory role of TRAF3 in GMEB1-mediated inhibition of apoptosis. Better understanding of the molecular mechanism of TRAF3 function will improve diagnostics and targeted therapeutic approaches for TRAF3-associated disorders.
期刊介绍:
Journal of Biological Research-Thessaloniki is a peer-reviewed, open access, international journal that publishes articles providing novel insights into the major fields of biology.
Topics covered in Journal of Biological Research-Thessaloniki include, but are not limited to: molecular biology, cytology, genetics, evolutionary biology, morphology, development and differentiation, taxonomy, bioinformatics, physiology, marine biology, behaviour, ecology and conservation.