{"title":"利用递归神经网络和蛋白质进化信息预测自相互作用蛋白质","authors":"Ji-Yong An, Yong Zhou, Zi-Ji Yan, Yu-Jun Zhao","doi":"10.1177/1176934320924674","DOIUrl":null,"url":null,"abstract":"<p><p>Self-interacting proteins (SIPs) play crucial roles in biological activities of organisms. Many high-throughput methods can be used to identify SIPs. However, these methods are both time-consuming and expensive. How to develop effective computational approaches for identifying SIPs is a challenging task. In the article, we present a novel computational method called RRN-SIFT, which combines the recurrent neural network (RNN) with scale invariant feature transform (SIFT) to predict SIPs based on protein evolutionary information. The main advantage of the proposed RNN-SIFT model is that it uses SIFT for extracting key feature by exploring the evolutionary information embedded in Position-Specific Iterated BLAST-constructed position-specific scoring matrix and employs an RNN classifier to perform classification based on extracted features. Extensive experiments show that the RRN-SIFT obtained average accuracy of 94.34% and 97.12% on the <i>yeast</i> and <i>human</i> dataset, respectively. We also compared our performance with the back propagation neural network (BPNN), the state-of-the-art support vector machine (SVM), and other existing methods. By comparing with experimental results, the performance of RNN-SIFT is significantly better than that of the BPNN, SVM, and other previous methods in the domain. Therefore, we conclude that the proposed RNN-SIFT model is a useful tool for predicting SIPs, as well to solve other bioinformatics tasks. To facilitate widely studies and encourage future proteomics research, a freely available web server called RNN-SIFT-SIPs was developed at http://219.219.62.123:8888/RNNSIFT/ including the source code and the SIP datasets.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"16 ","pages":"1176934320924674"},"PeriodicalIF":1.7000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/12/10.1177_1176934320924674.PMC7278102.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting Self-Interacting Proteins Using a Recurrent Neural Network and Protein Evolutionary Information.\",\"authors\":\"Ji-Yong An, Yong Zhou, Zi-Ji Yan, Yu-Jun Zhao\",\"doi\":\"10.1177/1176934320924674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-interacting proteins (SIPs) play crucial roles in biological activities of organisms. Many high-throughput methods can be used to identify SIPs. However, these methods are both time-consuming and expensive. How to develop effective computational approaches for identifying SIPs is a challenging task. In the article, we present a novel computational method called RRN-SIFT, which combines the recurrent neural network (RNN) with scale invariant feature transform (SIFT) to predict SIPs based on protein evolutionary information. The main advantage of the proposed RNN-SIFT model is that it uses SIFT for extracting key feature by exploring the evolutionary information embedded in Position-Specific Iterated BLAST-constructed position-specific scoring matrix and employs an RNN classifier to perform classification based on extracted features. Extensive experiments show that the RRN-SIFT obtained average accuracy of 94.34% and 97.12% on the <i>yeast</i> and <i>human</i> dataset, respectively. We also compared our performance with the back propagation neural network (BPNN), the state-of-the-art support vector machine (SVM), and other existing methods. By comparing with experimental results, the performance of RNN-SIFT is significantly better than that of the BPNN, SVM, and other previous methods in the domain. Therefore, we conclude that the proposed RNN-SIFT model is a useful tool for predicting SIPs, as well to solve other bioinformatics tasks. To facilitate widely studies and encourage future proteomics research, a freely available web server called RNN-SIFT-SIPs was developed at http://219.219.62.123:8888/RNNSIFT/ including the source code and the SIP datasets.</p>\",\"PeriodicalId\":50472,\"journal\":{\"name\":\"Evolutionary Bioinformatics\",\"volume\":\"16 \",\"pages\":\"1176934320924674\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/12/10.1177_1176934320924674.PMC7278102.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/1176934320924674\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320924674","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Predicting Self-Interacting Proteins Using a Recurrent Neural Network and Protein Evolutionary Information.
Self-interacting proteins (SIPs) play crucial roles in biological activities of organisms. Many high-throughput methods can be used to identify SIPs. However, these methods are both time-consuming and expensive. How to develop effective computational approaches for identifying SIPs is a challenging task. In the article, we present a novel computational method called RRN-SIFT, which combines the recurrent neural network (RNN) with scale invariant feature transform (SIFT) to predict SIPs based on protein evolutionary information. The main advantage of the proposed RNN-SIFT model is that it uses SIFT for extracting key feature by exploring the evolutionary information embedded in Position-Specific Iterated BLAST-constructed position-specific scoring matrix and employs an RNN classifier to perform classification based on extracted features. Extensive experiments show that the RRN-SIFT obtained average accuracy of 94.34% and 97.12% on the yeast and human dataset, respectively. We also compared our performance with the back propagation neural network (BPNN), the state-of-the-art support vector machine (SVM), and other existing methods. By comparing with experimental results, the performance of RNN-SIFT is significantly better than that of the BPNN, SVM, and other previous methods in the domain. Therefore, we conclude that the proposed RNN-SIFT model is a useful tool for predicting SIPs, as well to solve other bioinformatics tasks. To facilitate widely studies and encourage future proteomics research, a freely available web server called RNN-SIFT-SIPs was developed at http://219.219.62.123:8888/RNNSIFT/ including the source code and the SIP datasets.
期刊介绍:
Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.