评估对SARS-CoV-2感染的免疫反应。

IF 6.2 Q1 IMMUNOLOGY ImmunoTargets and Therapy Pub Date : 2020-06-11 eCollection Date: 2020-01-01 DOI:10.2147/ITT.S264138
Michael R Shurin, Alison Morris, Alan Wells, Sarah E Wheeler
{"title":"评估对SARS-CoV-2感染的免疫反应。","authors":"Michael R Shurin, Alison Morris, Alan Wells, Sarah E Wheeler","doi":"10.2147/ITT.S264138","DOIUrl":null,"url":null,"abstract":"Michael R Shurin 1,2 Alison Morris Alan Wells 1 Sarah E Wheeler 1Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 2Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 3Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA In the XXI century, we have already witnessed the global spread of three previously unknown coronaviruses. In 2002, the first known case of severe acute respiratory syndrome (SARS) occurred in China and SARS coronavirus (SARS-CoV) was identified in 2003. Before SARS pandemic was declared to be over in summer of 2003, about 8500 cases were reported, including almost 900 deaths in 32 countries. Ten years later, in 2012, a novel coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), was isolated and was proven to be associated with several clusters of cases, first in the Arabian Peninsula and then in other countries. As a result, almost 2500 cases including more than 850 deaths in 27 countries have been reported. In 2019, a novel β-coronavirus caused severe and even fatal pneumonia in Wuhan China, and rapidly spread to other provinces of China and other countries in 2020. The World Health Organization (WHO) on March 11, 2020, declared coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) a pandemic. By mid-May 2020, more than 300,000 people have died and over 4,000,000 have been infected by the coronavirus in almost 200 countries and territories worldwide. Coronaviruses were first discovered in the 1930s when an acute respiratory infection of domesticated chickens was investigated, and human coronaviruses were first identified in the 1960s. These early identified human coronaviruses are circulated in the global human population and contribute to ~30% of common cold infections and mild respiratory symptoms and include the coronaviruses NL63, 229E, OC43 and HKU1. There are only seven coronaviruses known to cause disease in humans and the remaining three, MERS-CoV, SARS-CoV and SARSCoV-2 (or 2019-nCoV), are more severe than the four relatively benign earlier counterparts. Although SARS-CoV-2 and SARS-CoV share the same host receptor – the human angiotensin-converting enzyme 2 (ACE2), and in spite of ~80% genetic identity between SARS-CoV 1 and 2, these coronaviruses are different in several epidemiologic and biologic characteristics including transmissibility, virulence, survival, virus–host interactions and, it appears, induction of immune response and immune escape pathways. Like SARS and MERS, SARS-CoV-2 infection manifests most frequently with lower respiratory symptoms. A minority of patients progress to acute respiratory distress syndrome with diffuse alveolar damage. Though COVID-19 symptoms, in general, have presented chiefly within the respiratory system, the infection rapidly spreads to affect the kidneys, nervous and cardio-vascular systems, clotting Correspondence: Michael R Shurin Email shurinmr@upmc.edu ImmunoTargets and Therapy Dovepress open access to scientific and medical research","PeriodicalId":30986,"journal":{"name":"ImmunoTargets and Therapy","volume":"9 ","pages":"111-114"},"PeriodicalIF":6.2000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/ITT.S264138","citationCount":"11","resultStr":"{\"title\":\"Assessing Immune Response to SARS-CoV-2 Infection.\",\"authors\":\"Michael R Shurin, Alison Morris, Alan Wells, Sarah E Wheeler\",\"doi\":\"10.2147/ITT.S264138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Michael R Shurin 1,2 Alison Morris Alan Wells 1 Sarah E Wheeler 1Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 2Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 3Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA In the XXI century, we have already witnessed the global spread of three previously unknown coronaviruses. In 2002, the first known case of severe acute respiratory syndrome (SARS) occurred in China and SARS coronavirus (SARS-CoV) was identified in 2003. Before SARS pandemic was declared to be over in summer of 2003, about 8500 cases were reported, including almost 900 deaths in 32 countries. Ten years later, in 2012, a novel coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), was isolated and was proven to be associated with several clusters of cases, first in the Arabian Peninsula and then in other countries. As a result, almost 2500 cases including more than 850 deaths in 27 countries have been reported. In 2019, a novel β-coronavirus caused severe and even fatal pneumonia in Wuhan China, and rapidly spread to other provinces of China and other countries in 2020. The World Health Organization (WHO) on March 11, 2020, declared coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) a pandemic. By mid-May 2020, more than 300,000 people have died and over 4,000,000 have been infected by the coronavirus in almost 200 countries and territories worldwide. Coronaviruses were first discovered in the 1930s when an acute respiratory infection of domesticated chickens was investigated, and human coronaviruses were first identified in the 1960s. These early identified human coronaviruses are circulated in the global human population and contribute to ~30% of common cold infections and mild respiratory symptoms and include the coronaviruses NL63, 229E, OC43 and HKU1. There are only seven coronaviruses known to cause disease in humans and the remaining three, MERS-CoV, SARS-CoV and SARSCoV-2 (or 2019-nCoV), are more severe than the four relatively benign earlier counterparts. Although SARS-CoV-2 and SARS-CoV share the same host receptor – the human angiotensin-converting enzyme 2 (ACE2), and in spite of ~80% genetic identity between SARS-CoV 1 and 2, these coronaviruses are different in several epidemiologic and biologic characteristics including transmissibility, virulence, survival, virus–host interactions and, it appears, induction of immune response and immune escape pathways. Like SARS and MERS, SARS-CoV-2 infection manifests most frequently with lower respiratory symptoms. A minority of patients progress to acute respiratory distress syndrome with diffuse alveolar damage. Though COVID-19 symptoms, in general, have presented chiefly within the respiratory system, the infection rapidly spreads to affect the kidneys, nervous and cardio-vascular systems, clotting Correspondence: Michael R Shurin Email shurinmr@upmc.edu ImmunoTargets and Therapy Dovepress open access to scientific and medical research\",\"PeriodicalId\":30986,\"journal\":{\"name\":\"ImmunoTargets and Therapy\",\"volume\":\"9 \",\"pages\":\"111-114\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/ITT.S264138\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoTargets and Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/ITT.S264138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoTargets and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/ITT.S264138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 11
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing Immune Response to SARS-CoV-2 Infection.
Michael R Shurin 1,2 Alison Morris Alan Wells 1 Sarah E Wheeler 1Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 2Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 3Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA In the XXI century, we have already witnessed the global spread of three previously unknown coronaviruses. In 2002, the first known case of severe acute respiratory syndrome (SARS) occurred in China and SARS coronavirus (SARS-CoV) was identified in 2003. Before SARS pandemic was declared to be over in summer of 2003, about 8500 cases were reported, including almost 900 deaths in 32 countries. Ten years later, in 2012, a novel coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), was isolated and was proven to be associated with several clusters of cases, first in the Arabian Peninsula and then in other countries. As a result, almost 2500 cases including more than 850 deaths in 27 countries have been reported. In 2019, a novel β-coronavirus caused severe and even fatal pneumonia in Wuhan China, and rapidly spread to other provinces of China and other countries in 2020. The World Health Organization (WHO) on March 11, 2020, declared coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) a pandemic. By mid-May 2020, more than 300,000 people have died and over 4,000,000 have been infected by the coronavirus in almost 200 countries and territories worldwide. Coronaviruses were first discovered in the 1930s when an acute respiratory infection of domesticated chickens was investigated, and human coronaviruses were first identified in the 1960s. These early identified human coronaviruses are circulated in the global human population and contribute to ~30% of common cold infections and mild respiratory symptoms and include the coronaviruses NL63, 229E, OC43 and HKU1. There are only seven coronaviruses known to cause disease in humans and the remaining three, MERS-CoV, SARS-CoV and SARSCoV-2 (or 2019-nCoV), are more severe than the four relatively benign earlier counterparts. Although SARS-CoV-2 and SARS-CoV share the same host receptor – the human angiotensin-converting enzyme 2 (ACE2), and in spite of ~80% genetic identity between SARS-CoV 1 and 2, these coronaviruses are different in several epidemiologic and biologic characteristics including transmissibility, virulence, survival, virus–host interactions and, it appears, induction of immune response and immune escape pathways. Like SARS and MERS, SARS-CoV-2 infection manifests most frequently with lower respiratory symptoms. A minority of patients progress to acute respiratory distress syndrome with diffuse alveolar damage. Though COVID-19 symptoms, in general, have presented chiefly within the respiratory system, the infection rapidly spreads to affect the kidneys, nervous and cardio-vascular systems, clotting Correspondence: Michael R Shurin Email shurinmr@upmc.edu ImmunoTargets and Therapy Dovepress open access to scientific and medical research
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
0.00%
发文量
7
审稿时长
16 weeks
期刊介绍: Immuno Targets and Therapy is an international, peer-reviewed open access journal focusing on the immunological basis of diseases, potential targets for immune based therapy and treatment protocols employed to improve patient management. Basic immunology and physiology of the immune system in health, and disease will be also covered.In addition, the journal will focus on the impact of management programs and new therapeutic agents and protocols on patient perspectives such as quality of life, adherence and satisfaction.
期刊最新文献
Identification of CRTH2 as a New PPARγ-Target Gene in T Cells Suggested CRTH2 Dependent Conversion of Th2 Cells as Therapeutic Concept in COVID-19 Infection. Causality Between 91 Circulating Inflammatory Proteins and Various Asthma Phenotypes: A Mendelian Randomization Study. The Effect of Circulating Inflammatory Proteins on Endometriosis: A Mendelian Randomization Study. Patients with Extensive-Stage Small Cell Lung Cancer Harboring Less Than 4 Metastatic Sites May Benefit from Immune Checkpoint Inhibitor Rechallenge by Reshaping Tumor Microenvironment. The Efficacy and Safety of Bevacizumab Plus Anti-PD-1/PD-L1 Inhibitors in Combination with Hepatic Arterial Infusion Chemotherapy for Initially Unresectable Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1